精英家教网 > 初中数学 > 题目详情
如图,A是⊙O外一点,B是⊙O上一点,AO的延长线交⊙O于点C,连接BC,∠C=22.5°,∠A=45度.求证:直线AB是⊙O的切线.
证明:连接OB(如图).
∵OB、OC是⊙O的半径,
∴OB=OC.
∴∠OBC=∠OCB=22.5°,
∴∠AOB=∠OBC+∠OCB=45°.
∵∠A=45°,
∴∠OBA=180°-(∠AOB+∠A)=90°.
∵OC是⊙O的半径,
∴直线AB是⊙O的切线.
(过半径外端且垂直于该半径的直线是圆的切线)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,已知PA、PB切⊙O于点A、B,OP交AB于C,则图中能用字母表示的直角共有(  )个.
A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,Rt△ABC中,∠ACB=90°,点O在AC上,以O为圆心、OC为半径的圆与AB相切于点D,交AC于点E.
(1)求证:DEOB;
(2)若⊙O的半径为2,BC=4,求AD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图i,半圆O为△ABC的外接半圆,AC为直径,D为劣弧
BC
上的一动点,P在CB的延长线上,且有∠BAP=∠BDA.
(1)求证:AP是半圆O的切线;
(2)当其它条件不变时,问添加一个什么条件后,有BD2=BE•BC成立?说明理由;
(3)如图ii,在满足(2)问的前提下,若OD⊥BC与H,BE=2,EC=4,连接PD,请探究四边形ABDO是什么特殊的四边形,并求tan∠DPC的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的切线,A为切点,AC是⊙O的弦,过O作OH⊥AC于点H,若OH=2,AB=12,BO=13.求:
(1)⊙O的半径;
(2)sin∠OAC的值;
(3)弦AC的长(结果保留含有根号的式子).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,PA、PB是⊙O的切线,切点分别为A、B,点C在⊙O上,如果∠P=50°,那么∠ACB等于(  )
A.40°B.50°C.65°D.130°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB是⊙O的直径,PC切⊙O于C,AD⊥PD,CM⊥AB,垂足分别为D,M.
(1)求证:CB平分∠PCM;
(2)若∠CBA=60°,求证:△ADM为等边三角形;
(3)若PO=5,PC=a,⊙O的半径为r,且a,r是关于x的方程x2-(2m+1)x+4m=0的两根,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PA、PB是⊙O的切线,切点分别为A、B两点,点C在⊙O上运动(与A、B两点不重合),如果∠P=46°,那么∠ACB的度数是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,EB、EC是⊙O的两条切线,B、C为切点,A是⊙O上的任意一点,若∠A=70°,则∠E=______.

查看答案和解析>>

同步练习册答案