精英家教网 > 初中数学 > 题目详情

已知四边形ABCD是平行四边形(如图),把△ABD沿对角线BD翻折180°得到△A′BD.
(1)利用尺规作出△A′BD.(要求保留作图痕迹,不写作法);
(2)设DA′与BC交于点E,求证:△BA′E≌△DCE.

解:(1)如图:①作∠A′BD=∠ABD,
②以B为圆心,AB长为半径画弧,交BA′于点A′,
③连接BA′,DA′,
则△A′BD即为所求;

(2)∵四边形ABCD是平行四边形,
∴AB=CD,∠BAD=∠C,
由折叠的性质可得:∠BA′D=∠BAD,A′B=AB,
∴∠BA′D=∠C,A′B=CD,
在△BA′E和△DCE中,

∴△BA′E≌△DCE(AAS).
分析:(1)首先作∠A′BD=∠ABD,然后以B为圆心,AB长为半径画弧,交BA′于点A′,连接BA′,DA′,即可作出△A′BD.
(2)由四边形ABCD是平行四边形与折叠的性质,易证得:∠BA′D=∠C,A′B=CD,然后由AAS即可判定:△BA′E≌△DCE.
点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、已知四边形ABCD是矩形,当补充条件
AB=AD
(用字母表示)时,就可以判定这个矩形是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知四边形ABCD是正方形,M、N分别是边BC、CD上的动点,正方形ABCD的边长为4cm.

(1)如图①,O是正方形ABCD对角线的交点,若OM⊥ON,求四边形MONC的面积;
(2)如图②,若∠MAN=45°,求△MCN的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知四边形ABCD是正方形,M、N分别是边BC,CD上的动点.
(1)如图①,设O是正方形ABCD对角线的交点,若OM⊥ON,求证:BM=CN,
(2)在(1)的条件下,若正方形ABCD的边长为4cm,求四边形MONC的面积;
(3)如图②,若∠MAN=45°试说明△MCN的周长等于正方形ABCD周长的一半.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知四边形ABCD是平行四边形,则下列结论中哪一个不满足平行四边形的性质(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知四边形ABCD是菱形,点E、F分别是边CD、AD的中点,若AE=3cm,那么CF=
3
3
cm.

查看答案和解析>>

同步练习册答案