精英家教网 > 初中数学 > 题目详情
18、如图,∠AOB=90°,将三角尺的直角顶点P,置于∠AOB的平分线OC上,让三角尺绕点P旋转,设三角尺的两直角边与∠AOB的两边分别交于E、F,请写出一个利用上述所有条件推出的一个正确结论(不再标注其它字母)
PE=PF
分析:如果过点P作PM⊥OA于M,PN⊥OB于N.首先利用角平分线的性质得出PM=PN,然后由ASA证出△PME≌△PNF,从而得出PE=PF.
解答:解:过点P作PM⊥OA于M,PN⊥OB于N.
又∵P为∠AOB的平分线OC上的任意一点,
∴PM=PN.
在△PME与△PNF中,∠EMP=∠FNP=90°,PM=PN,∠EPM=∠FPN=90°-∠EPN,
∴△PME≌△PNF,
∴PE=PF.
故答案为:PE=PF.
点评:此题主要考查了角平分线的性质,全等三角形的判定,熟练利用角平分线的性质是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、如图,∠AOB=90°,将三角尺的直角顶点落在∠AOB的平分线OC的任意一点P上,使三角尺的两条直角边与∠AOB的两边分别相交于点E、F.
(1)证明:PE=PF;
(2)若OP=10,试探索四边形PEOF的面积为定值,并求出这个定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,∠AOB=90°,点C、D分别在OA、OB上.
(1)尺规作图(不写作法,保留作图痕迹):作∠AOB的平分线OP;作过C、O、D三点的⊙E,与OP相交于F;连接CF、DF.
(2)在所画图中,△CDF是什么形状?并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泉州)如图,∠AOB=90°,∠BOC=30°,则∠AOC=
60
60
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

画图、证明:如图,∠AOB=90°,点C、D分别在OA、OB上.
(1)尺规作图(不写作法,保留作图痕迹):作∠AOB的平分线OP;作线段CD的垂直平分线EF,分别与CD、OP相交于E、F;连接CF、DF.
(2)在所画图中,求证:△CDF为等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,∠AOB=90°,∠AOC为锐角,且ON平分∠AOC,射线OM在∠BON内部.
(1)请你数一数,图中共有多少个小于平角的角.
(2)如果∠AOC=50°,∠MON=45°.
①求∠AOM的度数;
②请通过计算说明OM是否平分∠BOC.
(3)如果∠AOC=x°,∠MON=45°,OM是否平分∠BOC?请说明理由.

查看答案和解析>>

同步练习册答案