精英家教网 > 初中数学 > 题目详情
如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连结PE、PF、PG、PH,则△PEF和△PGH的面积和等于      
7

分析:连接EG,FH,根据题目数据可以证明△AEF与△CGH全等,根据全等三角形对应边相等可得EF=GH,同理可得EG=FH,然后根据两组对边相等的四边形是平行四边形可得四边形EGHF是平行四边形,所以△PEF和△PGH的面积和等于平行四边形EGHF的面积的一半,再利用平行四边形EGHF的面积等于矩形ABCD的面积减去四周四个小直角三角形的面积即可求解.
解:∵在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,
∴AE=AB-BE=4-1=3,
CH=CD-DH=4-1=3,
∴AE=CH,
在△AEF与△CGH中,
∴△AEF≌△CGH(SAS),
∴EF=GH,
同理可得,△BGE≌△DFH,
∴EG=FH,
∴四边形EGHF是平行四边形,
∵△PEF和△PGH的高的和等于点H到直线EF的距离,
∴△PEF和△PGH的面积和=×平行四边形EGHF的面积,
平行四边形EGHF的面积
=4×6-×2×3-×1×(6-2)-×2×3-×1×(6-2),
=24-3-2-3-2,
=14,
∴△PEF和△PGH的面积和=×14=7.
故答案为:7.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,正方形中,分别是上一点.在
、  ② 、 ③ 中,
选择其中一个条件,证明

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题6分)如图,四边形ABCD中,AB=BC=2,CD=1,AD=, ∠B=90°.

(1)判断∠D是否是直角,并说明理由.
(2)求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(10分)如图,平行四边形ABCD中,EFAC的中点O,与边ADBC分别相交于点EF

小题1:(1)试判断四边形AECF的形状,并说明理由.
小题2:(2)若EFAC,试判断四边形AECF的形状,并说明理由.
小题3:(3)请添加一个EFAC满足的条件,使四边形AECF是矩形,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在图1中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.
操作示例
当2b<a时,如图1,在BA上选取点G,使BG=b,连结FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置构成四边形FGCH.
思考发现
小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连结CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.
实践探究
小题1:正方形FGCH的面积是         ;(用含a, b的式子表示)
小题2:类比图1的剪拼方法,请你就图2—图4的三种情形分别画出剪拼成一个新正方形的示意图.

小题3:联想拓展小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.当b>a时(如图5),能否剪拼成一个正方形?若能,请你在图5中画出剪拼成的正方形的示意图;若不能,简要说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题


小题1:如图25-1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD;
小题2:如图25-2在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD, (1)中的结论是否仍然成立?不用证明.
小题3:如图25-3在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD, (1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

书籍是人类进步的阶梯!为爱护书一般都将书本用封皮包好.


小题1:现有精装词典长、宽、厚尺寸如图(1)所示(单位:cm),若按图(2)的包书方式,将封面和封底各折进去3cm.试用含a、b、c的代数式分别表示词典封皮(包书纸)的长是               cm,宽是___________cm;
小题2:在如图(4)的矩形包书纸皮示意图中,虚线为折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长即为折叠进去的宽度.
(1)若有一数学课本长为26cm、宽为18.5cm、厚为1cm,小海宝用一张面积为1260 cm2的矩形纸包好了这本数学书,封皮展开后如图(4)所示.若设正方形的边长(即折叠的宽度)为x cm,则包书纸长为                 cm,宽为             cm(用含x的代数式表示).
(2)请帮小海宝列好方程,求出第(1)题中小正方形的边长x cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

长方形的一边等于2a+3b,另一边比它小a-b,则长方形的周长为             (   )
A.3a+2bB.a+4bC.6a+14bD.10a+10b

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知E、F、G、H是四边形ABCD四边的中点,则四边形EFGH的形状为;如四边形ABCD的对角线AC   与BD的和为40,则四边形EFGH的周长为.

查看答案和解析>>

同步练习册答案