精英家教网 > 初中数学 > 题目详情
如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A,B的坐标分别是A(3,3)、B(1,2),△AOB绕点O逆时针旋转90°后得到△.
(1)画出△,直接写出点的坐标;
(2)在旋转过程中,点B经过的路径的长;
(3)求在旋转过程中,线段AB所扫过的面积.
(1)作图见解析,A1(-3,3),B1(-2,1);(2)(3)

试题分析:(1)根据网格结构找出点A、B绕点O逆时针旋转90°后的对应点A1、B1的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标;
(2)利用勾股定理列式求出OB的长,再利用弧长公式列式计算即可得解;
(3)根据AB扫过的面积等于以OA、OB为半径的两个扇形的面积的差列式计算即可得解.
(1)△A1OB1如图所示,A1(-3,3),B1(-2,1);

(2)由勾股定理得,OB=
所以,弧BB1=
(3)由勾股定理得,OA=
S扇形OAA1=
S扇形OBB1=
则线段AB所扫过的面积为:
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.如图,若点D与圆心O重合,AC=2,求⊙O的半径r;

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是__________.(结果保留π)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C.
(1)求证:AB与⊙O相切;
(2)若∠AOB=120°,AB=,求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.
(1)求证:DC为⊙O的切线;
(2)若⊙O的半径为3,AD="4" ,求AC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为

A.4          B.6             C.            D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

点O1、O2在直线l上,⊙O1的半径为2cm,⊙O2的半径为3cm,4cm<O1O2<8cm.⊙O1与⊙O2
不可能出现的位置关系是( )
A.外离 B.外切C.相交D.内切

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥DC,BC=10cm,CD=6cm.在线段BC、CD上有动点F、E,点F以每秒2cm的速度,在线段BC上从点B向点C匀速运动;同时点E以每秒1cm的速度,在线段CD上从点C向点D匀速运动.当点F到达点C时,点E同时停止运动.设点F运动的时间为t(秒).
(1)求AD的长;
(2)设四边形BFED的面积为y,求y 关于t的函数关系式并写出自变量的取值范围
(3)当t为何的值时,以EE为半径的⊙F与CD边只有一个公共点.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一几何体的三视图如图所示,其中正视图与左视图是两个全等的等腰三角形,俯视图是圆,则该几何体的侧面积为   

查看答案和解析>>

同步练习册答案