A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
分析 ①由△ABC为等边三角形,可得∠B=∠C=60°.又由OB=OC=OD=OE,即可证得△OBD,△OEC均为等边三角形,继而证得△ODE是等边三角形;
解答 解:①∵△ABC为等边三角形,
∴∠B=∠C=60°.
∵OB=OC=OD=OE,
∴△OBD,△OEC均为等边三角形.
∴∠BOD=∠COE=60°.
∴∠DOE=60°.
∵OD=OE,
∴△ODE为等边三角形,故①正确;
②当△ODE是等边三角形,∠A=60°,∠C≠60°,△ABC不是等边三角形,故②错误;
③连接CD,,
∵BC是直径,
∴∠BDC=90°=∠ADC.
∵∠A=45°,
∴∠ACD=45°,
∴∠DOE=2∠DCE=90°,
即△ODE是直角三角形,故③正确;
④∵BC是直径,
∴∠BDC=90°=∠ADC.
∵∠ECD=$\frac{1}{2}$∠DOE=45°,
∴∠A=90°-∠ACD=45°,故④正确;
故选:C.
点评 本题考查了圆周角定定理,①②利用了等边三角形的判定,③④利用了圆周角定理:同弦所对的圆周角是圆心角的一半,直角三角形的性质.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | x<0 | B. | x>0 | C. | x≠0 | D. | x≠0且x≠7 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com