精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,在△ABC中,AD⊥BC于点D,CE⊥AB于点E,BE=2AE,且AD=2
6
sin∠BCE=
1
3
,求CE的长.
分析:由题中条件可得△ABD∽△CBE,得出其对应边成比例,进而再结合已知条件即可求解CE的长.
解答:解:∵BE=2AE,∴设AE=k,则BE=2k,AB=3k.
∵AD⊥BC于D,CE⊥AB于E,
∴∠BEC=∠ADB=90°.
又∠B=∠B,
∴△ABD∽△CBE.
AD
AB
=
CE
BC

∵sin∠BCE=
1
3

∴BC=
BE
sin∠BCE
=
2k
1
3
=6k

2
6
3k
=
CE
6k
,∴CE=4
6
点评:本题主要考查了相似三角形的判定及性质问题以及求解直角三角形的问题,能够熟练运用其性质求解一些计算问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案