精英家教网 > 初中数学 > 题目详情

【题目】张大伯从报社以每份0.4元的价格购进了份报纸,以每份0.5元的价格售出了份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入()

A. 0.7b-0.6a B. 0.5b-0.2a C. 0.7b-0.6a D. 0.3b-0.2a

【答案】D

【解析】

张大伯购进报纸共花费了0.4a元,售出的报纸共得0.5b,退回报社的报纸共得0.2(a-b),所以张大伯卖报共收入0.5b+0.2(a-b)-0.4a=0.3b-0.2a(元).

因为张大伯购进报纸共花费了0.4a,售出的报纸共得0.5b,退回报社的报纸共得0.2(a-b)元,

所以张大伯卖报收入0.5b+0.2(a-b)-0.4a=0.3b-0.2a.

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA= ,则∠D的度数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠AOB130°,∠COD80°OMON分别是∠AOB和∠COD的平分线.

(1)如果OAOC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;

(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0n155),如图2

①∠MON与旋转度数有怎样的数量关系?说明理由;

②当n为多少时,∠MON为直角?

(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OC绕着O点顺时针旋转m°(0m100),如图3,∠MON与旋转度数有怎样的数量关系?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知已知抛物线 与x轴交于点 和点 ,与y轴交于点C,且 .

(1)求此抛物线的解析式;
(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;
(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.
(4)连AC,H是抛物线上一动点,过点H作AC的平行线交x轴于点F,是否这样的点F,使得以A,C,H,F为顶点的四边形是平行四边形?若存在,直接写出满足条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为a的正方形木块在水平地面上沿直线滚动一周(没有滑动),则它的中心点O所经过的路径长为( )

A.4a
B.2 πa
C.
πa
D.
a

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有四张规格、质地相同的卡片,它们背面完全相同,正面图案分别是A.平行四边形,B.菱形,C.矩形,D.正方形,将这四张卡片背面朝上洗匀后.
(1)随机抽取一张卡片图案是轴对称图形的概率是
(2)随机抽取两张卡片(不放回),求两张卡片卡片图案都是轴对称图形的概率,并用树状图或列表法加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(阅读)|4﹣1|表示41差的绝对值,也可以理解为41两数在数轴上所对应的两点之间的距离;|4+1|可以看做|4﹣(﹣1)|,表示4与﹣1的差的绝对值,也可以理解为4与﹣1两数在数轴上所对应的两点间的距离.

(1)|4﹣(﹣1)|=   

(2)|5+2|=   

(3)利用数轴找出所有符合条件的整数x,使得|x+3|=5,则x=   

(4)利用数轴找出所有符合条件的整数x,使得|x+3|+|x﹣2|=5,这样的整数是:   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点EEGDE,使EG=DE,连接FG,FC.

(1)请判断:FGCE的关系是___;

(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;

(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+ x+c(a≠0)与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知点A的坐标为(﹣1,0),点C的坐标为(0,2).

(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

查看答案和解析>>

同步练习册答案