如图,抛物线y=a(x-1)2+c与x轴交于点A(1-,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P(1,3)处.
(1)求原抛物线的解析式:
(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W'’型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比 (约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?
(参考数据:=2.236,=2.449,结果可保留根号)
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2012年初中毕业升学考试(山东济宁卷)数学(带解析) 题型:解答题
如图,抛物线y=ax2+bx-4与x轴交于A(4,0)、B(-2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.女女
【小题1】求该抛物线的解析式;
【小题2】当动点P运动到何处时,BP2=BD•BC;
【小题3】当△PCD的面积最大时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源:2011-2012学年四川乐山市区中考模拟数学试卷(解析版) 题型:解答题
如图,抛物线y=ax2+bx+c与x轴交于A(x1,0)、B(x2,0)两点,与y轴交于C点,对称轴与抛物线相交于点P,与直线BC相交于点M,连接PB.已知x1、x2
恰是方程的两根,且sin∠OBC=.
1.求该抛物线的解析式;
2.抛物线上是否存在一点Q,使△QMB与△PMB的面积相等,若存在,求点Q的坐标;若不存在,说明理由
3.在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相等,若存在,直接写出点R的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源:2011-2012学年福建省九年级下学期第一次统考数学卷 题型:解答题
(14分)如图,抛物线:y=ax2+bx+1的顶点坐标为D(1,0),
1.(1)求抛物线的解析式;
2.(2)如图1,将抛物线向右平移1个单位,向下平移1个单位得到抛物线,直线,
经过点D交y轴于点A,交抛物线于点B,抛物线的顶点为P,求△DBP的面积;
3.如图2,连结AP,过点B作BC⊥AP于C,设点Q为抛物线上点至点之间的一动点,
连结 并延长交于点,试问:当点Q运动到什么位置时,△BCF的面积为。
查看答案和解析>>
科目:初中数学 来源:2012届浙江省杭州市九年级第一次中考模拟考试数学卷 题型:选择题
(本题满分12分)如图,抛物线y=a(x+1)(x-5)与x轴的交点为M、N.直线y=kx+b
与x轴交于P(-2,0),与y轴交于C.若A、B两点在直线y=kx+b上,且AO=BO=,AO⊥BO.D为线段MN的中点,OH为Rt△OPC斜边上的高.
(1)OH的长度等于___________;k=___________,b=____________;
(2)是否存在实数a,使得抛物线y=a(x+1)(x-5)上有一点E,满足以D、N、E为顶
点的三角形与△AOB相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E点(简要说明理由);并进一步探索对符合条件的每一个E点,直线NE与直线AB的交点G是否总满足PB·PG<,写出探索过程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com