精英家教网 > 初中数学 > 题目详情

(10分)已知:如图,直线y =+1与x轴、y轴的交点

分别是A和B,把线段AB绕点A顺时针旋转90°得
线段AB'.
⑴ 在图中画出△ABB',并直接写出点A和点B'
的坐标;
⑵ 求直线AB'表示的函数关系式;
⑶ 若动点C(1,a)使得S△ABC=S△ABB'
求a的值.

⑴画图基本准确.                ………………………………………………1分
点A(2,0)、点B'(3,2) .                     ………………………3分
⑵把点A、点B'的坐标分别代入y =kx+b,
 
解得k=2,b= -4.
∴直线AB'表示的函数关系式是y =2x-4 .                 ………………§K]
⑶∵△ABB'为等腰直角三角形,直角边AB==
∴ SABB==.                  ……………………………………5分
在y =+1中,当x=1时,y=0.5.
即直线x=1与AB交于点M(1,0.5).
又∵点A和B到CM的距离之和显然为2,
∴ SABC=CM×2= |a-0.5|=.           …………………………………6分
解得,a=3,或-2.  

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图,直线y=
3
3
x+
3
与x轴、y轴分别交于A、B两点,⊙M经过精英家教网原点O及A、B两点.
(1)求以OA、OB两线段长为根的一元二方程;
(2)C是⊙M上一点,连接BC交OA于点D,若∠COD=∠CBO,写出经过O、C、A三点的二次函数的解析式;
(3)若延长BC到E,使DE=2,连接EA,试判断直线EA与⊙M的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•岳阳)已知:如图,直线MN和⊙O切于点C,AB是⊙O的直径,AE⊥MN,BF⊥MN且与⊙O交于点G,垂足分别是E、F,AC是⊙O的弦,
(1)求证:AB=AE+BF;
(2)令AE=m,EF=n,BF=p,证明:n2=4mp;
(3)设⊙O的半径为5,AC=6,求以AE、BF的长为根的一元二次方程;
(4)将直线MN向上平行移动至与⊙O相交时,m、n、p之间有什么关系?向下平行移动至与⊙O相离时,m、n、p之间又有什么关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直线y=kx+b经过点A、B.
求:(1)这个函数的解析式;
(2)当x=4时,y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直线y=kx+b与x轴交于点A,且与双曲线y=
m
x
交于点B(4,2)和点C(n,-4). 
(1)求直线y=kx+b和双曲线y=
m
x
的解析式;
(2)根据图象写出关于x的不等式kx+b<
m
x
的解集;
(3)点D在直线y=kx+b上,设点D的纵坐标为t(t>0).过点D作平行于x轴的直线交双曲线y=
m
x
于点E.若△ADE的面积为
7
2
,请直接写出所有满足条件的t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直线a∥b,∠1=(2x+10)°,∠2=(3x-5)°,那么∠1=
80
80
°.

查看答案和解析>>

同步练习册答案