【题目】等腰中,是BC边上的高,且,则等腰底角的度数为__________.
【答案】,,
【解析】
分三种情况:①点A是顶角顶点时,②点A是底角顶点,且AD在△ABC外部时,③点A是底角顶点,且AD在△ABC内部时,再结合直角三角形中,30°的角所对的直角边等于斜边的一半即可求解.
①如图,若点A是顶角顶点时,
∵AB=AC,AD⊥BC,
∴BD=CD,∵,
∴AD=BD=CD,
在Rt△ABD中,∠B=∠BAD=
;
②如图,若点A是底角顶点,且AD在△ABC外部时,
∵,AC=BC,
∴,
∴∠ACD=30°,
∴∠BAC=∠ABC=×30°=15°;
③如图,若点A是底角顶点,且AD在△ABC内部时,
∵,AC=BC,
∴,
∴∠C=30°,
∴∠BAC=∠ABC=(180°-30°)=75°;
综上所述,△ABC底角的度数为45°或15°或75°;
故答案为,,.
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,抛物线经过点,且与轴交于,两点,与轴交于点,连接,,.
该抛物线的解析式;
如图,点是所求抛物线上的一个动点,过点作轴的垂线,分别交轴于点,交直线于点,设点的横坐标为,当时,过点作,交轴于点,连接,则为何值时,的面积取得最大值,并求出这个最大.
如图,中,,,,直角边在轴上,且与重合,当沿轴从右向左以每秒个单位长度的速度移动时,设与重叠部分的面积为,求当时,移动的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC和等边△ECD的边长相等,BC与CD两边在同一直线上,请根据如下要求,使用无刻度的直尺,通过连线的方式画图.
(1)在图1中画一个直角三角形; (2)在图2中画出∠ACE的平分线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,,.
用直尺和圆规作的平分线,交于,并在上取一点,使,再连接,交于;(要求保留作图痕迹,不必写出作法)
依据现有条件,直接写出图中所有相似的三角形,并求出.(图中不再增加字母和线段,不要求证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,OABC的顶点A的坐标为(6,0),顶点B的纵坐标为5.点D是x轴正半轴上一点(不与点A重合),点D的坐标为(x,0),△ODC与△DAB的面积分别记为S1、S2,设S=S1﹣S2.
(1)用含x的代数式表示线段AD的长.
(2)求S与x之的函数关系式.
(3)当S与△DBC的面积相等时,求x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,则下列结论:①AB+AD=2AE;②∠DAB+∠DCB=180°;③CD=CB;④S△ACE﹣2S△BCE=S△ADC;其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.
(1)求证:四边形DBEC是菱形;
(2)若AD=3,DF=1,求四边形DBEC面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,BC是弦,∠ABC=30°,过圆心O作OD⊥BC,垂足为E,交弧BC于点D,连接DC,则∠DCB的度数为( )
A. 30° B. 45° C. 50° D. 60°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c经过A(-1,0),B(2,0),C(0,2)三点.
(1)求这条抛物线表示的二次函数的表达式;
(2)点P是第一象限内此抛物线上的一个动点,当点P运动到什么位置时,四边形ABPC的面积最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com