精英家教网 > 初中数学 > 题目详情
四边形ABCD的对角线AC、BD相交于点O,AD∥BC,AD=BC,为使四边形ABCD为正方形,还需要满足下列条件中:①AC=BD;②AB=AD;③AB=CD;④AC⊥BD中的哪两个
①②或①④
①②或①④
(填代号).
分析:因为AD∥BC,AD=BC,所以四边形ABCD为平行四边形,添加①则可根据对角线相等的平行四边形是矩形,证明四边形是矩形,故可根据一组邻边相等的矩形是正方形来添加条件.
解答:解:∵AD∥BC,AD=BC,
∴四边形ABCD为平行四边形,
∵AC=BD,
∴平行四边形ABCD是矩形,
若AB=AD,
则四边形ABCD为正方形;
若AC⊥BD,则四边形ABCD是正方形.
故填:①②或①④.
点评:本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途径有两种:
①先说明它是矩形,再说明有一组邻边相等;
②先说明它是菱形,再说明它有一个角为直角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内心.如图1,PH=PJ,PI=PG,则点P就是四边形ABCD的准内心.

(1)如图2,∠AFD与∠DEC的角平分线FP,EP相交于点P.求证:点P是四边形ABCD的准内心.
(2)分别画出图3平行四边形和图4梯形的准内心.(作图工具不限,不写作法,但要有必要的说明)
(3)同样,我们定义:到凸四边形一组对角顶点的距离相等,到另一组对角顶点的距离也相等的点叫凸四边形的准外心.若QA=QC,QB=QD,则点Q就是四边形ABCD的准外心.那么你认为Q是
AC的中垂线
AC的中垂线
BD的中垂线
BD的中垂线
的交点.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,EF过平行四边形ABCD的对角形的交点O,交AD于点E,交BC于点F,已知AB=5,BC=6,OE=2,那么四边形EFCD的周长是
15
15

查看答案和解析>>

科目:初中数学 来源:1+1轻巧夺冠·优化训练·八年级数学下 题型:013

若四边形ABCD的对角∠BAD与∠BCD的角平分线互相平行,则∠B与∠D的关系为

[  ]

A.∠B+∠D=180°

B.∠B=∠D

C.∠B>∠D

D.∠B<∠D

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,EF过平行四边形ABCD的对角形的交点O,交AD于点E,交BC于点F,已知AB=5,BC=6,OE=2,那么四边形EFCD的周长是________.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

若四边形ABCD的对角∠BAD与∠BCD的角平分线互相平行,则∠B与∠D的关系为


  1. A.
    ∠B+∠D=180°
  2. B.
    ∠B=∠D
  3. C.
    ∠B>∠D
  4. D.
    ∠B<∠D

查看答案和解析>>

同步练习册答案