精英家教网 > 初中数学 > 题目详情
(2008•重庆)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.
求证:(1)△BFC≌△DFC;
(2)AD=DE.

【答案】分析:(1)由CF平分∠BCD可知∠BCF=∠DCF,然后通过SAS就能证出△BFC≌△DFC.
(2)要证明AD=DE,连接BD,证明△BAD≌△BED则可.AB∥DF?∠ABD=∠BDF,又BF=DF?∠DBF=∠BDF,∴∠ABD=∠EBD,BD=BD,再证明∠BDA=∠BDC则可,容易推理∠BDA=∠DBC=∠BDC.
解答:证明:(1)∵CF平分∠BCD,
∴∠BCF=∠DCF.
在△BFC和△DFC中,

∴△BFC≌△DFC(SAS).

(2)连接BD.
∵△BFC≌△DFC,
∴BF=DF,∴∠FBD=∠FDB.
∵DF∥AB,
∴∠ABD=∠FDB.∴∠ABD=∠FBD.
∵AD∥BC,
∴∠BDA=∠DBC.
∵BC=DC,
∴∠DBC=∠BDC.
∴∠BDA=∠BDC.
又∵BD是公共边,
∴△BAD≌△BED(ASA).
∴AD=DE.
点评:这道题是主要考查全等三角形的判定和性质,涉及的知识比较多,有点难度.
练习册系列答案
相关习题

科目:初中数学 来源:2008年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2008•重庆)已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年江苏省南京市第50中学第二次月考数学试卷(解析版) 题型:解答题

(2008•重庆)已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年湖北省武汉市五月调考九年级数学试卷(解析版) 题型:解答题

(2008•重庆)已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年重庆市中考数学试卷(解析版) 题型:解答题

(2008•重庆)已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案