精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知矩形OABC的三个顶点A(0,10),B(8,10),C(8,0),过O、C两点的抛物线y=ax2+bx+c与线段AB交于点D,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.

(1)求AD的长及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒.请问当t为何值时,以P、Q、C为顶点的三角形是等腰三角形?
(3)若点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M、N、C、E为顶点四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.

【答案】
(1)解:∵四边形ABCO为矩形,

∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10,

∴△BDC≌△EDC,

∴∠B=∠DEC=90°,EC=BC=10,ED=BD,

由勾股定理易得:EO=6.

∴AE=10﹣6=4,

设AD=x,则BD=ED=8﹣x,

由勾股定理,得x2+42=(8﹣x)2

解得,x=3,

∴AD=3,

∵抛物线y=ax2+bx+c过点D(3,10),C(8,0),O(0,0),

解得:

∴抛物线的解析式为:y=﹣ x2+ x


(2)解:如图1,

当CP=CQ时,

10﹣2t=t,t=

如图2,当CP=PQ时,

= ,t=

如图3,当CQ=PQ时,

= ,t=


(3)解:假设存在符合条件的M、N点,分两种情况讨论:

EC为平行四边形的对角线,由于抛物线的对称轴经过EC中点,

若四边形MENC是平行四边形,那么M点必为抛物线顶点;

则:M(4, );

而平行四边形的对角线互相平分,那么线段MN必被EC中点(4,3)平分,

则N(4,﹣ );

②EC为平行四边形的边,则EC∥MN,设N(4,m),

则M(4﹣8,m+6)或M(4+8,m﹣6);

将M(﹣4,m+6)代入抛物线的解析式中,得:m=﹣38,

此时 N(4,﹣38)、M(﹣4,﹣32);

将M(12,m﹣6)代入抛物线的解析式中,得:m=﹣26,

此时 N(4,﹣26)、M(12,﹣32),

综上,存在符合条件的M、N点,且它们的坐标为:①M1(﹣4,﹣32),N1(4,﹣38);②M2(12,﹣32),N2(4,﹣26);③M3(4, ),N3(4,﹣ ).


【解析】(1)根据折叠图形的轴对称性,△CED、△CBD全等,首先在Rt△CEO中求出OE的长,进而可得到AE的长;在Rt△AED中,AD=AB﹣BD、ED=BD,利用勾股定理可求出AD的长.进一步能确定D点坐标,利用待定系数法即可求出抛物线的解析式;(2)分CP=CQ、CP=PQ、PQ=CQ三种情况讨论,根据等腰三角形的性质和相似三角形的判定和性质解答即可;(3)由于以M,N,C,E为顶点的四边形,边和对角线都没明确指出,所以要分情况进行讨论:①EC做平行四边形的对角线,那么EC、MN必互相平分,由于EC的中点正好在抛物线对称轴上,所以M点一定是抛物线的顶点;②EC做平行四边形的边,那么EC、MN平行且相等,首先设出点N的坐标,然后结合E、C的横、纵坐标差表示出M点坐标,再将点M代入抛物线的解析式中,即可确定M、N的坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两名工人同时加工同一种零件,现根据两人7天产品中每天出现的次品数情况绘制成如下不完整的统计图和表,依据图、表信息,解答下列问题:

相关统计量表:

量数

众数

中位数

平均数

方差

   

   

2

1

1

1

次品数量统计表:

天数

1

2

3

4

5

6

7

2

2

0

3

1

2

4

1

0

2

1

1

0

   

(1)补全图、表.

(2)判断谁出现次品的波动小.

(3)估计乙加工该种零件30天出现次品多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在乘法公式的学习中,我们采用了构造几何图形的方法研究问题,借助直观、形象的几何模型,加深对乘法公式的认识和理解,从中感悟数形结合的思想方法,感悟几何与代数内在的统一性,根据课堂学习的经验,解决下列问题:

1)如图①边长为(x+3)的正方形纸片,剪去一个边长为x的正方形之后,剩余部分可拼剪成一个长方形(不重叠无缝隙),则这个长方形的面积为   (用含x的式子表示).

2)如果你有5张边长为a的正方形纸,4张长、宽分别为abab)的长方形纸片,3张边长为b正方形纸片.现从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(不重叠无缝隙),则拼成的正方形的边长最长可以为   

Aa+bBa+2bCa+3bD.2a+b

31个大正方形和4个大小完全相同的小正方形按图②③两种方式摆放,求图③中,大正方形中未被4个小正方形覆盖部分的面积.(用含mn的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分在RtABC中,BAC=,D是BC的中点,E是AD的中点过点A作AFBC交BE的延长线于点F

1求证:AEFDEB

2证明四边形ADCF是菱形;

3AC=4,AB=5,求菱形ADCFD 的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列叙述不正确的是(

A. 一个三角形必有三条中位线

B. 一个三角形必有三条中线

C. 三角形的一条中线分成的两个三角形的面积相等

D. 三角形的一条中位线分成的两部分面积相等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在平面直角坐标系中,已知点A(-5,0),B(5,0),D(2,7).

(1)若点C为AD与y轴的交点,求C点的坐标;【提示:设C点的坐标为(0,x)】

(2)动点PB点出发以每秒1个单位的速度沿BA方向运动,同时动点QC点出发,也以每秒1个单位的速度沿y轴正半轴方向运动.(当P点运动到A点时,两点都停止运动,如图②所示).设从出发起运动了x秒.

①请用含x的代数式分别表示PQ两点的坐标;

②当x=2时,y轴上是否存在一点E,使得△AQE的面积与△APQ的面积相等?若存在,求E点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把下列各数分别填入它所属于的集合的括号内.

9+4.3|0.5|,﹣(+7)18%(13)4,﹣60

正分数集合{_________}

负分数集合{_________}

负整数集合{__________}

非负整数集合{________}

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新学期伊始,学校联系厂家出售作业本,若学生在学校购买每个作业本1.5元,去校外的商店购买每个作业本2元.学校对学生一学期使用作业本的数量进行了调查,收集了30个学生一学期使用作业本的数据,整理绘制成如图的条形统计图:

若学校在开学时要求每位学生在校一次性购买18个作业本,设x表示学生本学期使用作业本的数量,y表示购买作业本的费用(单位:元).
(1)写出x≤18和x>18时,y与x的函数关系式;
(2)在上述频数直方图中,当使用作业本的频率不小于0.5时,最少需要购买几个作业本;
(3)利用上述频数直方图,计算这30名学生平均使用作业本的费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地城管需要从甲、乙两个仓库向A、B两地分别运送10吨和5吨的防寒物资,甲、乙两仓库分别有8吨、7吨防寒物资.从甲、乙两仓库运送防寒物资到A、B两地的运费单价(元/吨)如表1,设从甲仓库运送到A地的防寒物资为x吨(如表2).

表1

甲仓库

乙仓库

A地

80

100

B地

60

40

表2

甲仓库

乙仓库

A地

10-x

B地

(1)完成表2;

(2)求运送的总运费y(元)与x(吨)之间的函数表达式,并直接写出x的取值范围;

(3)求最低总运费.

查看答案和解析>>

同步练习册答案