精英家教网 > 初中数学 > 题目详情
如图,在矩形纸片ABCD中,AB=8,AD=4,把矩形沿直线AC折叠,点B落在E处,连接DE,其中AE交DC于P.有下面四种说法:①AP=5;②△APC是等边三角形;③△APD≌△CPE;④四边形ACED为等腰梯形,且它的面积为25.6.其中正确的有(  )个.
分析:分别根据图形翻折变换前后图形对应相等,以及利用勾股定理全等三角形的判定分别分析即可.
解答:解:①∵在矩形纸片ABCD中,AB=8,AD=4,矩形沿直线AC折叠,
∴∠BAC=∠CAE,
∵CD∥AB,
∴∠BAC=∠DCA,
∴∠DCA=∠PAC,
∴PC=PA,
假设PC=x,则PA=x,
∴DP=8-x,
∴AD2+DP2=AP2
∴42+(8-x)2=x2
解得:x=5,
∴①AP=5,故此选项正确;
②∵PC=PA,
∴△APC是等腰三角形,故此选项错误;
③∵CE=AD,∠EPC=∠DPA,
∠ADP=∠CEP,
∴△APD≌△CPE;故此选项正确;
④作EQ⊥AC,
∵可证△EAC≌△DAC,
∴两三角形面积相等,
∴DE∥AC,
∵AD=EC,
∴四边形ACED为等腰梯形,
∵PC=5,
∴DP=3,∵AP=5,∴PE=3,
∵EQ×AC=AE×EC,
∴EQ=
8
5
5

∵△DPE∽△CPA,
DE
AC
=
PE
AP

∴DE=
12
5
5

∴梯形面积为:
1
2
×
8
5
5
×(
12
5
5
+4
5
),
=25.6.
∴它的面积为25.6.故此选项正确;
其中正确的有3个.
故选:C.
点评:此题主要考查了图形的翻折变换,根据等腰三角形的性质以及翻折变换前后对应相等情况是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在矩形纸片ABCD中,AB=8,BC=6,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都一模)如图,在矩形纸片ABCD中,AB=3,BC=4,把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合,则EF=
25
12
25
12

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄石模拟)如图,在矩形纸片ABCD中,AB=3,BC=4.把△BCD沿对角线BD折叠,使点C落在E处,BE交AD于点F;
(1)求证:AF=EF;
(2)求tan∠ABF的值;
(3)连接AC交BE于点G,求AG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形纸片ABCD中,AB=8,BC=10.E、F为AB、BC边上两个动点,以EF为折痕折叠纸片,使点B恰好落在AD边上的点P处.当E、F运动时,点P也在一定范围内移动,则这个移动范围的最大距离为
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:

动手操作:如图,在矩形纸片ABCD中,AB=3,AD=5.如图所示折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动.
求:(1)当点Q与点D重合时,A′C的长是多少?
(2)点A′在BC边上可移动的最大距离是多少?

查看答案和解析>>

同步练习册答案