精英家教网 > 初中数学 > 题目详情
26、如图,以锐角△ABC的边AC、AB为边向外作正方形ACDE和正方形ABGF,连接BE、CF.
(1)哪两个图形可以通过旋转而相互得到?请指出旋转中心和旋转角.
(2)试探索BE和CF的数量和位置关系?直接写出结果,不必说明理由.
分析:(1)观察△ABE和△AFC的位置关系,可确定旋转中心,旋转方向,旋转角;
(2)由旋转的性质可知,旋转前后的三角形全等,可知对应边相等,即BE=CF,利用互余关系可证BE⊥CF.
解答:解:(1)△ABE和△AFC可以通过旋转而相互得到,旋转中心是A,旋转角为90°;

(2)BE=CF,BE⊥CF.
理由如下:
∵△ABE和△AFC可以通过旋转而相互得到,旋转中心是A,旋转角为90°,
∴BE=CF,BE⊥CF.
点评:本题考查了旋转的性质,正方形的性质及三角形全等的性质,关键是根据图形中两个三角形的位置关系解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如图,以锐角△ABC的边AB、AC向外作正方形APQB和正方形AEFC,连接PE,作AD⊥BC,垂足为D,延长DA交PE于点H.过P作PM⊥DM,垂足为M,过点E作EN⊥DM,垂足为N.
(1)不再增加线条或字母,在图中找出一对全等三角形,并给出证明;
(2)求证:PH=HE.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,以锐角△ABC的边AC、AB为边向外作正方形ACDE和正方形ABGF,连接BE、CF.
(1)试探索BE和CF的关系?并说明理由.
(2)你能找到哪两个图形可以通过旋转而相互得到,并指出旋转中心和旋转角.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以锐角△ABC的边AB为直径作半圆⊙O交边BC、CA于点E、F.过点E、F分别作⊙O的切线得交点P.求证:CP⊥AB.

查看答案和解析>>

科目:初中数学 来源:广东省期末题 题型:解答题

如图,以锐角△ABC的边AC、AB为边向外作正方形ACDE和正方形ABGF,连接BE、CF.
(1)试探索BE和CF的关系?并说明理由。
(2)你能找到哪两个图形可以通过旋转而相互得到,并指出旋转中心和旋转角。

查看答案和解析>>

同步练习册答案