精英家教网 > 初中数学 > 题目详情
(1997•湖南)已知:如图,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,∠APB是平分线分别交BC,AB于点D、E,交⊙O于点F,∠A=60°,并且线段AE、BD的长是一元二次方程 x2-kx+2
3
=0的两根(k为常数).
(1)求证:PA•BD=PB•AE;
(2)求证:⊙O的直径长为常数k;
(3)求tan∠FPA的值.
分析:(1)由PB切⊙O于点B,根据弦切角定理,可得∠PBD=∠A,又由PF平分∠APB,可证得△PBD∽△PAE,然后由相似三角形的对应边成比例,证得PA•BD=PB•AE;
(2)易证得BE=BD,又由线段AE、BD的长是一元二次方程 x2-kx+2
3
=0的两根(k为常数),即可得AE+BD=k,继而求得AB=k,即:⊙O的直径长为常数k;
(3)由∠A=60°,并且线段AE、BC的长是一元二次方程 x2-kx+2
3
=0的两根(k为常数),可求得AE与BD的长,继而求得tan∠FPB的值,则可得tan∠FPA的值.
解答:(1)证明:如图,
∵PB切⊙O于点B,
∴∠PBD=∠A,
∵PF平分∠APB,
∴∠APE=∠BPD,
∴△PBD∽△PAE,
∴PB:PA=BD:AE,
∴PA•BD=PB•AE;(2分)

(2)证明:如图,
∵∠BED=∠A+∠EPA,∠BDE=∠PBD+∠BPD.
又∵∠PBD=∠A,∠EPA=∠BPD,
∴∠BED=∠BDE.
∴BE=BD.
∵线段AE、BD的长是一元二次方程 x2-kx+2
3
=0的两根(k为常数),
∴AE+BD=k,
∴AE+BD=AE+BE=AB=k,
即⊙O直径为常数k.(5分)

(3)∵PB切⊙O于B点,AB为直径.
∴∠PBA=90°.
∵∠A=60°.
∴PB=PA•sin60°=
3
2
PA,
又∵PA•BD=PB•AE,
∴BD=
3
2
AE,
∵线段AE、BD的长是一元二次方程 x2-kx+2
3
=0的两根(k为常数).
∴AE•BD=2
3

3
2
AE2=2
3

解得:AE=2,BD=
3

∴AB=k=AE+BD=2+
3
,BE=BD=
3

在Rt△PBA中,PB=AB•tan60°=(2+
3
)×
3
=3+2
3

在Rt△PBE中,tan∠BPF=
BE
PB
=
3
3+2
3
=2-
3

∵∠FPA=∠BPF,
∴tan∠FPA=2-
3
点评:此题考查了切线的性质、等腰三角形的判定与性质、相似三角形的判定与性质以及根与系数的关系等知识.此题难度较大,注意掌握数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1997•湖南)已知△ABC中,∠A=65°40′,∠B=36°20′,则∠C的大小为
78°
78°

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•湖南)已知:四边形ABCD∽四边形A′B′C′D′,它们的周长分别为5m和3m,则S四边形ABCD:S四边形A′B′C′D′=
25:9
25:9

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•湖南)已知⊙O1的直径为10cm,⊙O2的直径为6cm,O1O2=8cm,则⊙O1与⊙O2的位置关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•湖南)已知:线段m,n(如图).求作:△ABC,使AB=AC,且BC=m,高AD=n.(要求写出作法,不写证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•湖南)已知:如图,在矩形ABCD中,BE=DF.求证:AF=CE.

查看答案和解析>>

同步练习册答案