精英家教网 > 初中数学 > 题目详情
精英家教网如图,直角三角形中未知边长是
 
分析:直接根据勾股定理进行计算.
解答:解:根据勾股定理,得
X=
92+122
=15.
点评:此题考查了勾股定理的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接CD.请找出图②中的全等三角形,并说明理由(说明:结论中不得含有未标识的字母).

查看答案和解析>>

科目:初中数学 来源: 题型:

19、已知,△ABC是等边三角形,将一块含30°角的直角三角板DEF如图放置,让三角板在BC所在的直线l上向右平移.当点E与点B重合时,点A恰好落在三角板的斜边DF上.
问:在三角板平移过程中,图中是否存在与线段EB始终相等的线段(假定AB、AC与三角板斜边的交点为G、H)?如果存在,请指出这条线段,并证明;如果不存在,请说明理由.
(说明:结论中不得含有图中未标识的字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•裕华区二模)已知,如图△ABC是等边三角形,将一块含30°角的直角三角板DEF如图放置,让△ABC在BC所在的直线l上向左平移.当点B与点E重合时,点A恰好落在三角板的斜边DF上的M点,点C在N点位置上(假定AB、AC与三角板斜边的交点为G、H)
问:(1)在△ABC平移过程中,通过测量CH、CF的长度,猜想CH、CF满足的数量关系;
(2)在△ABC平移过程中,通过测量BE、AH的长度,猜想BE.AH满足的数量关系;
(3)证明(2)中你的猜想.(证明不得含有图中未标示的字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

两块大小不等的等腰直角三角板如图①所示拼在一起,图②是由它抽象出来的几何图形,点A、C、E在同一直线上,连接AB、BE.
(1)请找出图②中的全等三角形,并给予证明(说明:结论中不得出现未标识的字母);
(2)求证:AD⊥BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

教材第66页探索平方差公式时设置了如下情境:边长为b的小正方形纸片放置在边长为a的大正方形纸片上(如图①),你能通过计算未盖住部分的面积得到公式(a+b)(a-b)=a2-b2吗?(不必证明)

(1)如果将小正方形的一边延长(如图②),是否也能推导公式?请完成证明.
(2)面积法除了可以帮助我们记忆公式,还可以直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图③,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2,也可以表示为4×
12
ab+(a-b)2,由此推导出重要的勾股定理:a2+b2=c2.图④为美国第二十任总统伽菲尔德的“总统证法”,请你完成证明.
(3)试构造一个图形,使它的面积能够解释(a-2b)2=a2-4ab+4b2,画在下面的网格(图⑤)中,并标出字母a、b所表示的线段.

查看答案和解析>>

同步练习册答案