分析 利用完全平方公式把a2+$\frac{1}{{a}^{2}}$变形为(a-$\frac{1}{a}$)2+2,再利用整体代入的方法计算;先把$\frac{b}{a}$+$\frac{a}{b}$通分,再利用完全平方公式变形得到$\frac{(a+b)^{2}-2ab}{ab}$,然后利用整体代入的方法计算.
解答 解:a2+$\frac{1}{{a}^{2}}$=(a-$\frac{1}{a}$)2+2=32-2=7;
$\frac{b}{a}$+$\frac{a}{b}$=$\frac{{a}^{2}+{b}^{2}}{ab}$=$\frac{(a+b)^{2}-2ab}{ab}$=$\frac{{2}^{2}-2×(-5)}{-5}$=-$\frac{14}{5}$.
故答案为7,-$\frac{14}{5}$.
点评 本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3 | B. | 1 | C. | (1-a)2015 | D. | (1-a)2015+3 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com