精英家教网 > 初中数学 > 题目详情
已知抛物线的顶点为(0,4)且与x轴交于(﹣2,0),(2,0).

(1)直接写出抛物线解析式;
(2)如图,将抛物线向右平移k个单位,设平移后抛物线的顶点为D,与x轴的交点为A、B,与原抛物线的交点为P.
①当直线OD与以AB为直径的圆相切于E时,求此时k的值;
②是否存在这样的k值,使得点O、P、D三点恰好在同一条直线上?若存在,求出k值;若不存在,请说明理由.
解:(1)y=﹣x2+4。
(2)①如图,连接CE,CD,

∵OD是⊙C的切线,∴CE⊥OD。
在Rt△CDE中,∠CED=90°,CE=AC=2,DC=4,
∴∠EDC=30°。
∴在Rt△CDO中,∠OCD=90°,CD=4,∠ODC=30°,
∴OC=
∴当直线OD与以AB为直径的圆相切时,k=OC=
②存在k=,能够使得点O、P、D三点恰好在同一条直线上。理由如下:
设抛物线y=﹣x2+4向右平移k个单位后的解析式是y=﹣(x﹣k)2+4,它与y=﹣x2+4交于点P,
由﹣(x﹣k)2+4=﹣x2+4,解得x1=,x2=0(不合题意舍去)。
当x=时,y=﹣k2+4。
∴点P的坐标是(,﹣k2+4)。
设直线OD的解析式为y=mx,把D(k,4)代入,得mk=4,解得m=
∴直线OD的解析式为y=x。
若点P(,﹣k2+4)在直线y=x上,得﹣k2+4=,解得k=±(负值舍去)。
∴当k=时,O、P、D三点在同一条直线上。

试题分析:(1)∵抛物线的顶点为(0,4),∴可设抛物线解析式为y=ax2+4。
又∵抛物线过点(2,0),∴0=4a+4,解得a=﹣1。∴抛物线解析式为y=﹣x2+4。
(2)①连接CE,CD,根据切线的性质得出CE⊥OD,再解Rt△CDE,得出∠EDC=30°,然后Rt△CDO,得出OC=,则k=OC=
②设抛物线y=﹣x2+4向右平移k个单位后的解析式是y=﹣(x﹣k)2+4,它与y=﹣x2+4交于点P,先求出交点P的坐标是(,﹣k2+4),再利用待定系数法求出直线OD的解析式为y=x,然后将点P的坐标代入y=x,即可求出k的值。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,二次函数的图象经过点A,B,与x轴分别交于点E,F,且点E的坐标为(,0),以OC为直径作半圆,圆心为D.

(1)求二次函数的解析式;
(2)求证:直线BE是⊙D的切线;
(3)若直线BE与抛物线的对称轴交点为P,M是线段CB上的一个动点(点M与点B,C不重合),过点M作MN∥BE交x轴与点N,连结PM,PN,设CM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,3).

(1)求抛物线的解析式;
(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.

(1)求此抛物线的解析式.
(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=﹣x2+4与x轴交于A、B两点,与y轴交于C点,点P是抛物线上的一个动点且在第一象限,过点P作x轴的垂线,垂足为D,交直线BC于点E.

(1)求点A、B、C的坐标和直线BC的解析式;
(2)求△ODE面积的最大值及相应的点E的坐标;
(3)是否存在以点P、O、D为顶点的三角形与△OAC相似?若存在,请求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列选项正确的是
A.a>0B.c>0C.ac>0D.bc<0

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,AB是半圆O的直径,以OA为直径作半圆C,P是半圆C上的一个动点(P与点A,O不重合),AP的延长线交半圆O于点D,其中OA=4.

(1)判断线段AP与PD的大小关系,并说明理由;
(2)连接OD,当OD与半圆C相切时,求的长;
(3)过点D作DE⊥AB,垂足为E(如图②),设AP=x,OE=y,求y与x之间的函数关系式,并写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是
A.图象关于直线x=1对称
B.函数ax2+bx+c(a≠0)的最小值是﹣4
C.﹣1和3是方程ax2+bx+c(a≠0)的两个根
D.当x<1时,y随x的增大而增大

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,抛物线的顶点为P(-2,2)与y轴交于点A(0,3),若平移该抛物线使其顶P沿直线移动到点,点A的对应点为,则抛物线上PA段扫过的区域(阴影部分)的面积为     .

查看答案和解析>>

同步练习册答案