精英家教网 > 初中数学 > 题目详情
如图,从⊙O外一点P引圆的切线PA和PB,切点分别是A和B,如果∠APB=70°,那么这两条切线所夹劣弧AB的度数是(  )
A.110°B.70°C.55°D.35°

∵PA和PB是切线,
∴∠A=∠B=90°,
∵∠APB=70°,
∴∠AOB=180°-∠P=110°,
∴劣弧AB的度数是110°.
故选A.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,在平面直角坐标系中,⊙O的半径为1,点A坐标为(
1
2
3
2
),则点A与⊙O的位置关系是(  )
A.点A在⊙O外B.点A在⊙O上C.点A在⊙O内D.无法判断

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2,E为BC的中点,以OE为直径的⊙O′交X轴于D点,过D点作DF⊥AE于F.
(1)求OA和OC的长;
(2)求证:OE=AE;
(3)求证:DF是⊙O′的切线;
(4)在边BC上是否存在除E点以外的P点,使△AOP是等腰三角形?如果存在,请写出P点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是半圆O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合),点Q在半圆O上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C.
(1)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明;
(2)当QP⊥AB时,△QCP的形状是______三角形;
(3)由(1)、(2)得出的结论,请进一步猜想当点P在线段AM上运动到任何位置时,△QCP一定是______三角形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在平面上,给定了半径为r的圆O,对于任意点P,在射线OP上取一点P′,使得OP•OP′=r2,这把点P变为点P的变换叫做反演变换,点P与点P′叫做互为反演点.
(1)如图2,⊙O内外各一点A和B,它们的反演点分别为A和B′.求证:∠A′=∠B;
(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.

①选择:如果不经过点O的直线l与⊙O相交,那么它关于⊙O的反演图形是(  )
A、一个圆;B、一条直线;C、一条线段;D、两条射线
②填空:如果直线l与⊙O相切,那么它关于⊙O的反演图形是______,该图形与圆O的位置关系是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在△ABC中,∠C=90°,∠B=30°,O为AB上一点,AO=2,⊙O的半径为
9
5
,⊙O与AC的位置关系是(  )
A.相交B.相离C.相切D.不能确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

⊙O的半径为6cm,弦AB的长为6
3
cm
,以O为圆心,3cm长为半径作圆,与弦AB有______个公共交点.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图一,在△ABC中,分别以AB,AC为直径在△ABC外作半圆O1和半圆O2,其中O1和O2分别为两个半圆的圆心.F是边BC的中点,点D和点E分别为两个半圆圆弧的中点.
(1)连接O1F,O1D,DF,O2F,O2E,EF,证明:△DO1F≌△FO2E;
(2)如图二,过点A分别作半圆O1和半圆O2的切线,交BD的延长线和CE的延长线于点P和点Q,连接PQ,若∠ACB=90°,DB=5,CE=3,求线段PQ的长;
(3)如图三,过点A作半圆O2的切线,交CE的延长线于点Q,过点Q作直线FA的垂线,交BD的延长线于点P,连接PA.证明:PA是半圆O1的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,直角梯形ABCD中,ADBC,∠B=90°,AD+BC>DC,若腰DC上有点P,使AP⊥BP,则这样的点(  )
A.不存在B.只有一个C.只有两个D.有无数个

查看答案和解析>>

同步练习册答案