精英家教网 > 初中数学 > 题目详情
10、如图,在正方形ABCD中,AB=2,点P是CD上一动点,连接PA交BD于点E,过点E作EF⊥AP交BC于点F,过点F作FG⊥BD于点G,下列有四个结论:①AE=EF,②∠PAF=45°③BD=2EG,④△PCF的周长为定值,其中正确的结论是(  )
分析:(1)作辅助线,延长FE交AD于点L,连接CE,通过证明△ADE≌△CDE,可得:AE=CE,故需证明EC=EF,可证:AE=EF;
(2)由EF⊥AP,AE=EF,可得:∠FAP=45°;
(3)作辅助线,连接AC交BD于点O,证BD=2EG,只需证OA=GE即可,根据△AOE≌△EGP,可证OA=GE,故可证BD=2EG;(4)作辅助线,延长AD至点M,使AD=DM,过点C作CI∥FL,则IL=FC,可证AL=FE,再根据△MEC≌△MIC,可证:CI=IM,故△CEM的周长为边AM的长,为定值.
解答:解:(1)连接FP,EC,延长FF交AD于点L.

∵BD为正方形ABCD的对角线,
∴∠ADB=∠CDE=45°.
∵AD=CD,DE=DE,
∴△ADE≌CDE.
∴EC=AE,∠PCE=∠DAE.
∵∠ALF+∠LAE=90°,
∴∠LFC+∠DAE=90°.
∵∠PCE=∠DAE,
∴∠EFC=∠ECF,
∴EF=EC.
∴EF=AE.

(2)∵EF⊥AP,EF=AE,
∴∠FAP=45°.

(3)连接AC交BD于点O,可知:BD=2OA,
∵∠AEO+∠GEF=∠GFE+∠GEF,
∴∠AEO=∠GFE.
∵AE=FE,∠AOE=∠EGF=90°,
∴△AOE≌△EGF.
∴OA=GE.
∵BD=2OA,
∴BD=2EG.

(4)延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=FC,
根据△MPC≌△MIC,可得:CP=IM,
同理,可得:AL=FP,
∴FP+FC+PC=AL+LI+IM=AM=8.
∴△CPM的周长为8,为定值.
故(1)(2)(3)(4)结论都正确.
故选D.
点评:解答本题要充分里利用正方形的特殊性质,在解题过程中要多次利用三角形全等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案