精英家教网 > 初中数学 > 题目详情
(2010•淄博)已知关于x的方程x2-2(k-3)x+k2-4k-1=0.
(1)若这个方程有实数根,求k的取值范围;
(2)若这个方程有一个根为1,求k的值;
(3)若以方程x2-2(k-3)x+k2-4k-1=0的两个根为横坐标、纵坐标的点恰在反比例函数的图象上,求满足条件的m的最小值.
【答案】分析:(1)若一元二次方程有实数根,则根的判别式△=b2-4ac≥0,建立关于k的不等式,求出k的取值范围.
(2)将x=1代入方程,得到关于k的方程,求出即可,
(3)写出两根之积,两根之积等于m,进而求出m的最小值.
解答:解:(1)由题意得△=[-2(k-3)]2-4×(k2-4k-1)≥0
化简得-2k+10≥0,解得k≤5.
(2)将1代入方程,整理得k2-6k+6=0,解这个方程得
(3)设方程x2-2(k-3)x+k2-4k-1=0的两个根为x1,x2
根据题意得m=x1x2.又由一元二次方程根与系数的关系得x1x2=k2-4k-1,
那么m=k2-4k-1=(k-2)2-5,所以,当k=2时m取得最小值-5.
点评:一元二次方程根的判别式和根与系数的关系,是一个综合性的题目,也是一个难度中等的题目.总结:一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.
练习册系列答案
相关习题

科目:初中数学 来源:2010-2011学年江苏省南通市如皋市九年级数学新课程结束考试试卷(解析版) 题型:解答题

(2010•淄博)已知直角坐标系中有一点A(-4,3),点B在x轴上,△AOB是等腰三角形.
(1)求满足条件的所有点B的坐标;
(2)求过O,A,B三点且开口向下的抛物线的函数表达式(只需求出满足条件的一条即可);
(3)在(2)中求出的抛物线上存在点P,使得以O,A,B,P四点为顶点的四边形是梯形,求满足条件的所有点P的坐标及相应梯形的面积.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2010•淄博)已知直角坐标系中有一点A(-4,3),点B在x轴上,△AOB是等腰三角形.
(1)求满足条件的所有点B的坐标;
(2)求过O,A,B三点且开口向下的抛物线的函数表达式(只需求出满足条件的一条即可);
(3)在(2)中求出的抛物线上存在点P,使得以O,A,B,P四点为顶点的四边形是梯形,求满足条件的所有点P的坐标及相应梯形的面积.

查看答案和解析>>

科目:初中数学 来源:2010年山东省淄博市中考数学试卷(解析版) 题型:解答题

(2010•淄博)已知直角坐标系中有一点A(-4,3),点B在x轴上,△AOB是等腰三角形.
(1)求满足条件的所有点B的坐标;
(2)求过O,A,B三点且开口向下的抛物线的函数表达式(只需求出满足条件的一条即可);
(3)在(2)中求出的抛物线上存在点P,使得以O,A,B,P四点为顶点的四边形是梯形,求满足条件的所有点P的坐标及相应梯形的面积.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《圆》(03)(解析版) 题型:选择题

(2010•淄博)已知两圆的半径分别为R和r(R>r),圆心距为d.如图,若数轴上的点A表示R-r,点B表示R+r,当两圆外离时,表示圆心距d的点D所在的位置是( )

A.在点B右侧
B.与点B重合
C.在点A和点B之间
D.在点A左侧

查看答案和解析>>

同步练习册答案