【题目】在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,如图1,再在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒,底面为矩形EFGH,如图2.设小正方形的边长为x厘米.
(1)当矩形纸板ABCD的一边长为90厘米时,求纸盒的侧面积的最大值;
(2)当EH:EF=7:2,且侧面积与底面积之比为9:7时,求x的值.
【答案】
(1)解:∵矩形纸板ABCD的一边长为90cm,
∴矩形纸板的另一边长为3600÷90=40(cm),
则S侧=2[x(90﹣2x)+x(40﹣2x)]=﹣8x2+260x,
=﹣8(x﹣ )2+
.
∵﹣8<0,
∴当x= 时,S侧最大=
(2)解:设EF=2m,则EH=7m,
则侧面积为2(7mx+2mx)=18mx,底面积为7m2m=14m2,
由题意,得18mx:14m2=9:7,
∴m=x.
则AD=7x+2x=9x,AB=2x+2x=4x
由4x9x=3600,且x>0,
∴x=10
【解析】(1)最值问题可运用函数思想解决,设出自变量x,函数为纸盒的侧面积y,构建二次函数,配成顶点式,求出最大值;(2)用x的代数式表示出侧面积与底面积,根据9:7,再根据总面积为3600,建立方程,求出x.
科目:初中数学 来源: 题型:
【题目】小红同学在做作业时,遇到这样一道几何题:
已知:AB∥CD∥EF,∠A=110°,∠ACE=100°,过点E作EH⊥EF,垂足为E,交CD于H点.
(1)依据题意,补全图形;
(2)求∠CEH的度数.
小明想了许久对于求∠CEH的度数没有思路,就去请教好朋友小丽,小丽给了他如图2所示的提示:
请问小丽的提示中理由①是 ;
提示中②是: 度;
提示中③是: 度;
提示中④是: ,理由⑤是 .
提示中⑥是 度;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】操作探究:
(1)实践:如图1, 中,
为
边上的中线,
的面积记为
,
的面积记为
.则
.
(2)探究:在图2中,、
分别为四边形
的边
、
的中点,四边形
的面积记为
,阴影部分面积记为
,则
和
之间满足的关系式为______:
(3)解决问题:
在图3中,、
、
、
分别为任意四边形
的边
、
、
、
的中点,并且图中阴影部分的面积为
平方厘米,求图中四个小三角形的面积和,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】乘法公式的探究与应用:
(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分的面积是
(2)小颗将阴影部分接下来,重新拼成一个长方形,如图乙,则长方形的长是 ,宽是 ,面积是 (写成多项式乘法的形式).
(3)比较甲乙两图阴影部分的面积,可以得到恒等式
(4)运用你所得到的公式计算:10.3×9.7.
(5)若49x2﹣y2=25,7x﹣y=5,则7x+y的值为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了绿化环境,某中学八年级(3班)同学都积极参加了植树活动,下面是今年3月份该班同学植树情况的扇形统计图和不完整的条形统计图:
请根据以上统计图中的信息解答下列问题.
(1)植树3株的人数为 ;
(2)扇形统计图中植树为1株的扇形圆心角的度数为 ;
(3)该班同学植树株数的中位数是
(4)小明以下方法计算出该班同学平均植树的株数是:(1+2+3+4+5)÷5=3(株),根据你所学的统计知识
判断小明的计算是否正确,若不正确,请写出正确的算式,并计算出结果
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如下命题中:(1)过一点有且只有一条直线与已知直线垂直;(2)垂线段最短;(3)过一点有且只有一条直线与这条直线平行;(4)内错角相等;(5)平行于同一直线的两直线平行;(6)有两个角互余的三角形是直角三角形是真命题的有( )
A.个B.
个C.
个D.
个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点
为平面内一点.
(1)如图1,和
互余,小明说过
作
,很容易说明
。请帮小明写出具体过程;
(2)如图2,,当点
在线段
上移动时(点
与
,
两点不重合),指出
与
,
的数量关系?请说明理由;
(3)在(2)的条件下,若点在
,
两点外侧运动(点
与
,
,
三点不重合)请直接写出
与
,
的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com