分析 小明:把△ABF沿AD折叠,得△ABF≌△APF,连接PG,利用三角形全等的知识证明∠FPG=∠B+∠C=90°,进而可以证明BF、FG、GC之间的关系;
小颖:把△ABF旋转至△ACP,得△ABF≌△ACP,再利用三角形全等的知识证明∠ACP+∠ACB=90°,进而可以证明BF、FG、GC之间的关系.
解答 解:小明:
如图甲,把△ABF沿AD折叠,得△ABF≌△APF,连接PG,则
∠B=∠C=∠APF=45°,AP=AB=AC,BF=FP,∠BAF=∠PAF,
∵∠DAE=45°,∠BAC=90°,
∴∠PAF+∠PAG=∠BAF+∠CAG,
∴∠PAG=∠CAG,
在△PAG和△CAG中,
$\left\{\begin{array}{l}{AP=AC}\\{∠PAG=∠CAG}\\{AP=AP}\end{array}\right.$,
∴△PAG≌△CAG(SAS),
∴CG=GP,∠APG=∠C=45°,
∴∠FPG=45°+45°=90°,
∴在Rt△PFG中,GF2=PG2+PF2FG2=BF2+GC2.
小明:
如图乙,把△ABF绕点A逆时针旋转90°至△ACP,得△ABF≌△ACP,连接PG,
∴∠1=∠4,AF=AP,CP=BF,∠ACP=∠B=45°,
∵∠DAE=45°,∠BAC=90°,
∴∠1+∠3=45°,
∴∠4+∠3=45°,
∴∠2=∠4+∠3=45°,
∴∠2=∠PAG,
在△FAG和△PAG中,
$\left\{\begin{array}{l}{AF=AP}\\{∠2=∠PAG}\\{AG=AG}\end{array}\right.$,
∴△AFG≌△AGP(SAS),
∴FG=GP,
∵∠ACP+∠ACB=45°+45°=90°,
∴在Rt△PGC中,GP2=GC2+CP2,
∴FG2=BF2+GC2.
点评 本题主要考查旋转的性质,轴对称的性质,等腰直角三角形的性质以及三角形全等的判定与性质的综合应用,解答本题的关键是熟练掌握旋转和轴对称的知识,以及全等三角形的判定方法.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com