精英家教网 > 初中数学 > 题目详情
16.如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接CF.
(1)判断直线DE与半圆O的位置关系,并说明理由;
(2)①求证:CF=OC;
②若半圆O的半径为12,求阴影部分的周长.

分析 (1)结论:DE是⊙O的切线.首先证明△ABO,△BCO都是等边三角形,再证明四边形BDCG是矩形,即可解决问题;
(2)①只要证明△OCF是等边三角形即可解决问题;
②求出EC、EF、弧长CF即可解决问题.

解答 解:(1)结论:DE是⊙O的切线.
理由:∵CD⊥AD,
∴∠D=90°,
∵四边形OABC是平行四边形,
∴AD平行OC,
∴∠D=∠OCE=90°,
∴CO⊥DE,
∴DE是⊙O的切线.

(2)①连接BF.
∵四边形OABC是平行四边形,
∴BC∥AF,AB=OC,
∴∠AFB=∠CBF,
∴$\widehat{AB}$=$\widehat{CF}$,
∴AB=CF,
∴CF=OC.

②在Rt△OCE中,∵OC=12,∠COE=60°,∠OCE=90°,
∴OE=2OC=24,EC=12$\sqrt{3}$,
∵OF=12,
∴EF=12,
∴$\widehat{CF}$的长=$\frac{60π•12}{180}$=4π,
∴阴影部分的周长为4π+12+12$\sqrt{3}$.

点评 本题考查切线的判定、平行四边形的性质、等边三角形的判定和性质、弧长公式,解直角三角形等知识,解题的关键是学会添加常用辅助线,证明三角形是等边三角形是解题的突破点,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,反比例函数y=$\frac{m}{x}$的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1),且与y轴交于点P.
(1)求反比例函数与一次函数的表达式;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1、y2、y3的大小关系;
(3)观察图象,直接写出不等式kx+b>$\frac{m}{x}$的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,抛物线y=ax2+bx+c与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)若点M是x轴下方的抛物线上的一个动点,过点M作MN⊥x轴,交直线BC于点N,求四边形MBNA的最大面积,并求出点M的坐标;
(3)在抛物线上是否存在一点P,使△BCP为直角三角形?若存在,求出P点坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列运算中,正确的是(  )
A.(x+1)2=x2+1B.(x23=x5C.2x4•3x2=6x8D.x2÷x-1=x3(x≠0)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.定义:P、Q分别是两条线段a,b上任意一点,线段PQ长度的最小值叫做线段a与线段b的距离.已知,O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.
(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离为2;当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为$\sqrt{5}$;
(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.
(3)当m值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M,点D(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m值,使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:
183    191    169   190    177
则在该时间段中,通过这个路口的汽车数量的平均数是182.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.估计$\sqrt{38}$的值在(  )
A.4和5之间B.5和6之间C.6和7之间D.7和8之间

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.分解因式a2b-a的结果为a(ab-1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.计算:($\sqrt{2}$-3)0+(-$\frac{1}{2}$)-2-|-2|-2cos60°.

查看答案和解析>>

同步练习册答案