精英家教网 > 初中数学 > 题目详情
在锐角三角形ABC中,高AD=12,边AC=13,BC=14,求AB的长.
如图:
∵高AD=12,边AC=13,
∴由勾股定理得,CD=
AC2-AD2
=
132-122
=5,
∵BC=14,
∴BD=14-5=9,
在Rt△ABD中,AB=
AD2+BD2
=
122+92
=15.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c.图(2)是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形.
(1)画出拼成的这个图形的示意图,指出它是什么图形;
(2)用这个图形证明勾股定理;
(3)假设图(1)中的直角三角形有若干个,你能运用图(1)中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请在图(3)中画出拼后的示意图(无需证明).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠C=90°,AC=8,在△ABE中,DE是AB边上的高,DE=12,S△ABE=60,求BC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,作一个长方形OC=
2
,OB=2,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则BA的长度是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正六边形ABCDEF中,AB=2,点P是ED的中点,连接AP,则AP的长为(  )
A.2
3
B.4C.
13
D.
11

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我们运用图(I)图中大正方形的面积可表示为(a+b)2,也可表示为c2+4×
1
2
ab,即(a+b)2=c2+4×
1
2
ab由此推导出一个重要的结论a2+b2=c2,这个重要的结论就是著名的“勾股定理”.这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.
(1)请你用图(Ⅱ)(2002年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形的较大的直角边长都为a,较小的直角边长都为b,斜边长都为c).
(2)请你用(Ⅲ)提供的图形进行组合,用组合图形的面积表达式验证:(x+y)2=x2+2xy+y2
(3)现有足够多的边长为x的小正方形,边长为y的大正方形以及长为x宽为y的长方形,请你自己设计图形的组合,用其面积表达式验证:(x+y)(x+2y)=x2+3xy+2y2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

线段a,b,c是Rt△ABC的三边,则它们的比值可能是(  )
A.4:6:7B.6:8:12C.1:2:3D.5:12:13

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

木工师傅做一个人字形屋梁,如图所示,上弦AB=AC=4m,跨度BC为6m,现有一根长为3m的木料打算做中柱AD(AD是△ABC的中线),请你通过计算说明这根木料的长度是否适合做中柱AD.(只考虑长度、不计损耗)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在边长为1的小正方形组成的网格中画出一个格点三角形(三角形的各顶点都在方格的顶点上),使这个三角形的三边分别为
13
5
,2
5
,并求出这个三角形的面积.

查看答案和解析>>

同步练习册答案