精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,等腰三角形ABC的三个顶点A(0,1),点B在x轴的正半轴上,∠ABO=30°,点C在y轴上.
(1)直接写出点C的坐标为
(0,3)或(0,-1)
(0,3)或(0,-1)

(2)点P关于直线AB的对称点P′在x轴上,AP=1,在图中标出点P的位置并说明理由;
(3)在(2)的条件下,在y轴上找到一点M,使PM+BM的值最小,则这个最小值为
57
2
57
2
分析:(1)先确定A的位置,再作出△AOB,就可以求出AB=2,OB=
3
,在y轴上符合条件的有两点C1和C2,求出即可;
(2)根据AP=AO=1,得出P的对称点是O点,求出OC,即可得出OP,解直角三角形求出PQ和OQ即可;
(3)作出B关于y轴的对称点,连接PB′即可得出M点的位置,求出PB′长即可.
解答:解:(1)
符合条件的有两点,以A为圆心,以AB为半径画弧,交y轴于C1、C2点,
∵A(0,1),
∴OA=1,
∵在Rt△AOB中,OA=1,∠ABO=30°,
∴AB=2OA=2,OB=
3

即AC1=AC2=2,
∴OC1=1+2=3,OC2=2-1=2,
∴C的坐标是(0,3)或(0,-1),
故答案为:(0,3)或(0,-1);

(2)P的坐标是(
3
2
3
2
),
理由是:过P作PQ⊥x轴于Q,
∵OA=1,AP=1,AO⊥x轴,
∴x轴和以A为圆心,以1为半径的圆相切,
∵AP=1,
∴P在圆上,
∵点P关于直线AB的对称点P′在x轴上,AP=1,
∴P′点和O重合,如图:
∵P和P′关于直线AB对称,
∴PP′⊥AB,PC=P′C,
由三角形面积公式得:S△AOB=
1
2
AO×OB=
1
2
AB×CO,
3
×1=2OC,
∴OC=
3
2

∴PP′=2OC=
3

∵∠ABO=30°,∠OCB=90°,
∴∠POB=60°,
∴PQ=OP×sin60°=
3
2
,OQ=OP×cos60°=
3
2

即P的坐标是(
3
2
3
2
);

(3)
作B关于y轴的对称点B′,连接PB′交y轴于M,则M为所求,
∵OB=
3

∴OB′=
3

即BB′=2
3

∵PQ=
3
2

∴由勾股定理得:PB′=
(2
3
)2+(
3
2
)2
=
57
2

∴PM+BM=PM+B′M=PB′=
57
2

故答案为:
57
2
点评:本题考查了轴对称-最短路线问题,解直角三角形,等腰三角形的性质,勾股定理等知识点的应用,题目综合性比较强,难度偏大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有
5
5
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步练习册答案