5£®Èçͼ¢Ù£¬¡÷ABCÊDZ߳¤Îª6cmµÄµÈ±ßÈý½ÇÐΣ¬µãM£¬N·Ö±ð´ÓµãA£¬Bͬʱ³ö·¢£¬ÑرßAB£¬BCÔ˶¯£¬ÇÒËüÃǵÄËٶȶ¼Îª1cm/s£®ÉèµãMµÄÔ˶¯Ê±¼äΪt £¨s£©£®
£¨1£©ÔÚͼ¢ÙÖУ¬»­³öµãM¡¢N²¢Á¬½ÓMN£¬µ±t=2»ò4ʱ£¬¡÷BMNÊÇÖ±½ÇÈý½ÇÐΣ»
£¨2£©Èçͼ¢Ú£¬Á¬½ÓAN¡¢CM£¬ÏཻÓÚµãP£¬µ±t=3ʱ£¬¡÷ABN¡Õ¡÷CBM£»
£¨3£©Í¼¢ÚÖУ¬µãM£¬NÔÚÔ˶¯µÄ¹ý³ÌÖУ¬¡ÏCPNµÄ¶ÈÊý»á·¢Éú±ä»¯Âð£¿Èô±ä»¯£¬Ôò˵Ã÷ÀíÓÉ£»Èô²»±ä£¬ÇëÇó³öËüµÄ¶ÈÊý£®

·ÖÎö £¨1£©·ÖÁ½ÖÖÇé¿ö£º¢ÙÈçͼ1£¬µ±¡ÏBNM=90¡ãʱ£¬¡ÏBMN=30¡ã£¬ÔòBM=2BN£¬¢ÚÈçͼ2£¬µ±¡ÏBMN=90¡ãʱ£¬¡ÏBNM=30¡ã£¬BN=2BM£¬·Ö±ðÁÐʽ¿ÉÇóµÃtµÄÖµ£»
£¨2£©Èçͼ3£¬µ±BM=BNʱ£¬¡÷ABN¡Õ¡÷CBM£¬ÔòAM=BM£¬ËùÒÔt=6-t£¬½â³ö¼´¿É£»
£¨3£©Èçͼ4£¬¡ÏCPNµÄ¶ÈÊý²»»á·¢Éú±ä»¯£¬¶¼µÈÓÚ60¡ã£¬Ö¤Ã÷¡÷CAM¡Õ¡÷ABN£¬ÔÙÀûÓÃÍâ½Ç¶¨Àí¿ÉÒԵóö½áÂÛ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ£ºAM=BN=t£¬ÔòBM=6-t
µ±¡÷BMNÊÇÖ±½ÇÈý½ÇÐÎʱ£¬ÓÐÁ½ÖÖÇé¿ö£º
¢ÙÈçͼ1£¬µ±¡ÏBNM=90¡ãʱ£¬
¡ß¡÷ABCÊǵȱßÈý½ÇÐΣ¬
¡à¡ÏB=60¡ã£¬
¡à¡ÏBMN=90¡ã-60¡ã=30¡ã£¬
¡àBM=2BN£¬
¡à6-t=2t£¬
t=2£»
¢ÚÈçͼ2£¬µ±¡ÏBMN=90¡ãʱ£¬
¡ß¡ÏB=60¡ã£¬
¡à¡ÏBNM=30¡ã£¬
¡àBN=2BM£¬
¡àt=2£¨6-t£©£¬
t=4£¬
×ÛÉÏËùÊö£¬µ±t=2»ò4ʱ£¬¡÷BMNÊÇÖ±½ÇÈý½ÇÐΣ»
¹Ê´ð°¸Îª£º2»ò4£»
£¨2£©Èçͼ3£¬¡ßAB=BC£¬¡ÏB=¡ÏB£¬
¡àµ±BM=BNʱ£¬¡÷ABN¡Õ¡÷CBM£¬
¡ßAM=BN£¬
¡àAM=BM£¬
¡àt=6-t£¬
t=3£¬
¡àµ±t=3ʱ£¬¡÷ABN¡Õ¡÷CBM£¬
¹Ê´ð°¸Îª£º3£»
£¨3£©µãM£¬NÔÚÔ˶¯µÄ¹ý³ÌÖУ¬¡ÏCPNµÄ¶ÈÊý²»»á·¢Éú±ä»¯£¬¶¼µÈÓÚ60¡ã£¬ÀíÓÉÊÇ£º
Èçͼ4£¬
ÔÚ¡÷CAMºÍ¡÷ABNÖУ¬
¡ß$\left\{\begin{array}{l}{AC=AB}\\{¡ÏCAB=¡ÏABC=60¡ã}\\{AM=BN}\end{array}\right.$£¬
¡à¡÷CAM¡Õ¡÷ABN£¨SAS£©£¬
¡à¡ÏACM=¡ÏBAN£¬
¡ß¡ÏBAN+¡ÏCAN=¡ÏCAB=60¡ã£¬
¡à¡ÏACM+¡ÏCAN=60¡ã£¬
¡ß¡ÏCPN=¡ÏACM+¡ÏCAN£¬
¡à¡ÏCPN=60¡ã£®

µãÆÀ ±¾Ì⿼²éÁ˵ȱßÈý½ÇÐΡ¢È«µÈÈý½ÇÐεÄÐÔÖʺÍÅж¨ÒÔ¼°¶¯µãÔ˶¯ÎÊÌ⣬ÄѶÈÊÊÖУ¬ÊÇÖп¼³£¿¼ÌâÐÍ£»ÔÚ¶¯µãÎÊÌâÖУ¬ÈçͼËÙ¶ÈÏàµÈ£¬Ê±¼äÏàµÈ£¬Ôò·³ÌÏàµÈ£»Í¬Ê±ÔÚµÚ1ÎÊÖвÉÓÃÁË·ÖÀàÌÖÂÛµÄ˼Ï룬ÈÝÒ׶ª½â£¬Òª×¢Ò⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÈôʵÊým£¬nÂú×㣨m+1£©2+$\sqrt{n-5}$=0£¬Ôò$\sqrt{m+n}$=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÓÃÒ»Ìõ³¤16ÀåÃ×µÄϸÉþΧ³ÉÒ»¸öµÈÑüÈý½ÇÐΣ¬ÆäÖÐÒ»±ß³¤Îª6ÀåÃ×£¬ÔòÁíÍâÁ½±ßµÄ³¤·Ö±ðΪ4cm£¬6cm»ò5cm£¬5cm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªm+n-5µÄËãÊõƽ·½¸ùÊÇ3£¬m-n+4µÄÁ¢·½¸ùÊÇ-2£¬ÊÔÇó$\root{2m+1}{3m-n+2}$ µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èçͼ£¬¡÷ABCÖУ¬¡ÏC=90¡ã£¬¡ÏB=30¡ã£¬ADƽ·Ö¡ÏBAC£¬CD=2cm£¬DE¡ÍABÓÚE£¬ÔòBD=£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®½â·½³Ì£º2x+3=3x£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®42.34¡ã=42¡ã20'24''

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®½«£¨x2-mx+3£©£¨x-2£©È¥À¨ºÅ£¬ºÏ²¢Í¬ÀàÏîºó²»º¬x2ÏÄÇô³£ÊýmµÄֵΪ£¨¡¡¡¡£©
A£®0B£®2C£®-2D£®-3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®£¨1£©$\frac{\sqrt{27}+2\sqrt{12}}{\sqrt{3}}$
£¨2£©$£¨\sqrt{3}-\sqrt{5}£©£¨\sqrt{5}+\sqrt{3}£©+2$
£¨3£©ÇóxµÄÖµ  3£¨x+1£©2=48£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸