9£®Èçͼ£¬ÁâÐÎֽƬABCDµÄ±ß³¤Îª2£¬ÕÛµþÁâÐÎֽƬ£¬½«B¡¢DÁ½µãÖغÏÔÚ¶Ô½ÇÏßBDÉϵÄͬһµãP´¦£¬ÕÛºÛ·Ö±ðΪEF¡¢GH£®ÖغϵãPÔÚ¶Ô½ÇÏßBDÉÏÒƶ¯£¬ÉèÕÛºÛEFµÄ³¤Îªm£®ÇëÄã·Ö±ðÅжÏÒÔϽáÂÛµÄÕæ¼Ù£¬²¢¸ø³öÀíÓÉ£®
£¨1£©Èô¡ÏABC=60¡ã£¬Áù±ßÐÎAEFCHGµÄÖܳ¤ÊÇ4+2m£»
£¨2£©Èô¡ÏABC=90¡ã£¬Áù±ßÐεÄÃæ»ýµÄ×î´óÖµÊÇ3£»
£¨3£©Èô¡ÏABC=120¡ã£¬Áù±ßÐÎAEFCHGµÄÃæ»ý¹ØÓÚÕۺ۵ij¤mµÄº¯Êý¹ØϵʽÊÇ£ºSAEFCHG=-$\frac{\sqrt{3}}{6}$m2+m+$\sqrt{3}$£¨0$£¼m£¼2\sqrt{3}$£©£»
£¨4£©Èô¡ÏABCµÄ´óСΪ2¦Á£¨ÆäÖЦÁÊÇÈñ½Ç£©£¬Áù±ßÐÎAEFCHGµÄÖܳ¤ÊÇ4+4sin¦Á£®

·ÖÎö £¨1£©¸ù¾ÝÌâÒâ¿ÉÖª¡÷BEFºÍ¡÷DGHÊǵȱßÈý½ÇÐΣ¬ÔÙ¸ù¾ÝÁâÐεÄÐÔÖʼ´¿ÉÇó½â£»
£¨2£©¸ù¾ÝÌâÒâ¿ÉÖªËıßÐÎBEPFºÍËıßÐÎDGPHÊÇÕý·½ÐΣ¬ÔÙ¸ù¾ÝÕý·½ÐεÄÐÔÖʼ´¿ÉÇó½â£»
£¨3£©¸ù¾ÝÌâÒâ¿ÉÖªEF+GH=AC£¬ÔÙ¸ù¾ÝÈý½Çº¯ÊýºÍÁâµÄÐÔÖʼ´¿ÉÇó½â£»
£¨4£©¸ù¾ÝÌâÒâ¿ÉÖªEF+GH=AC£¬ÔÙ¸ù¾ÝÈý½Çº¯ÊýºÍÁâÐεÄÐÔÖʼ´¿ÉÇó½â£®

½â´ð ½â£º£¨1£©´í£»Èô¡ÏABC=60¡ã£¬ÓÉÌâÒâ¿ÉÖª¡÷BEFºÍ¡÷DGHÊǵȱßÈý½ÇÐΣ¬
¡àEF+AE+AG+GH+CH+CF=BE+AE+AG+GD+DH+CH=2+2+2=6£®
¡àÁù±ßÐÎAEFCHGµÄÖܳ¤Îª 6£¬Áù±ßÐÎAEFCHGµÄÖܳ¤Îª6ÊǶ¨Öµ£¬ÓëÕÛºÛEFµÄ³¤mÎ޹أ»
£¨2£©¶Ô£»Èô¡ÏABC=90¡ã£¬${S_{AEFCHG}}={S_{¡÷BCD}}+{S_{AEPG}}=2+\frac{{\sqrt{2}m}}{2}£¨2-\frac{{\sqrt{2}m}}{2}£©=-\frac{1}{2}{m^2}+\sqrt{2}m+2$SAEFCHG×î´óÖµ=$\frac{{4¡Á£¨-\frac{1}{2}£©¡Á2-{{£¨\sqrt{2}£©}^2}}}{{4¡Á£¨-\frac{1}{2}£©}}=3$£»
£¨3£©¶Ô£»SAEFCHG=S¡÷BCD+SAEPG=$\frac{{\sqrt{3}}}{4}¡Á{2^2}$+$\frac{{\sqrt{3}m}}{3}£¨2-\frac{{\sqrt{3}m}}{3}£©¡Á\frac{{\sqrt{3}}}{2}$=$-\frac{{\sqrt{3}}}{6}{m^2}+m+\sqrt{3}$£¨0£¼m£¾2$\sqrt{3}$£©£»
£¨4£©¶Ô£»Èô¡ÏABCµÄ´óСΪ2¦Á£¬ÓÉÌâÒâ¿ÉÖªEF+GH=AC£¬ÔòÁù±ßÐÎAEFCHGµÄÖܳ¤¿É±íʾΪ2¡Á2+2¡Ásin¦Á¡Á2=4+4sin¦Á£®

µãÆÀ ¿¼²éÁË·­Õ۱任£¨ÕÛµþÎÊÌ⣩£¬ÁâÐεÄÐÔÖÊ£¬±¾Ìâ¹Ø¼üÊǵõ½EF+GH=AC£¬×ÛºÏÐÔ½ÏÇ¿£¬ÓÐÒ»¶¨µÄÄѶÈ

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÏÈÔĶÁÏÂÁвÄÁÏ£¬È»ºó»Ø´ðºóÃæÎÊÌ⣺
½«Ò»¸ö¶àÏîʽ·Ö×éºó£¬¿ÉÌṫÒòʽ»òÔËÓù«Ê½¼ÌÐø·Ö½âµÄ·½·¨ÊÇ·Ö×é·Ö½â·¨£®ÄÜ·Ö×é·Ö½âµÄ¶àÏîʽͨ³£ÓÐËÄÏî»òÁùÏһ°ãµÄ·Ö×é·Ö½âÓÐËÄÖÖÐÎʽ£¬¼´¡°2+2¡±·Ö·¨¡¢¡°3+1¡±·Ö·¨¡¢¡°3+2¡±·Ö·¨¼°¡°3+3¡±·Ö·¨µÈ£®
Èç¡°2+2¡±·Ö·¨£º
ax+ay+bx+by
=£¨ax+ay£©+£¨bx+by£©
=a£¨x+y£©+b£¨x+y£©
=£¨x+y£©£¨a+b£©
Èç¡°3+1¡±·Ö·¨£º
2xy+y2-1+x2
=x2+2xy+y2-1
=£¨x+y£©2-1
=£¨x+y+1£©£¨x+y-1£©
ÇëÄã·ÂÕÕÒÔÉÏ·½·¨£¬Ì½Ë÷²¢½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©·Ö½âÒòʽ£ºx2-y2-x-y£»
£¨2£©·Ö½âÒòʽ£º45am2-20ax2+20axy-5ay2£»
£¨3£©·Ö½âÒòʽ£º4a2+4a-4a2b-b-4ab+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èçͼ£¬Ö±ÏßABºÍCDÏཻÓÚµãO£¬¡ÏAOD=100¡ã£¬Ôò¡ÏAOCµÄ¶ÈÊýΪ£¨¡¡¡¡£©
A£®120¡ãB£®100¡ãC£®90¡ãD£®80¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®£¨1£©Èçͼ1£¬Ö±Ïßa¡Îb£¬¡ÏP=90¡ã£¬Çó¡Ï1+¡Ï2µÄ¶ÈÊý£®ÏÖÌṩÏÂÃæÁ½Öֽⷨ£¬ÇëÌî¿Õ£¬À¨ºÅÀï±ê×¢ÀíÓÉ£®
·½·¨£¨Ò»£©½â£ºÈçͼ2£¬¹ýµãP×öÖ±Ïß cƽÐÐÓÚÖ±Ïßa£¬
¡ßa¡Îc  £¨ÒÑÖª£©
¡à¡Ï1=¡Ï3£¨Á½Ö±ÏßƽÐУ¬ÄÚ´í½ÇÏàµÈ£©
ÓÖ¡ßa¡Îb £¨ÒÑÖª£©
¡àc¡Îb £¨Æ½ÐÐÓÚͬһÌõÖ±ÏßµÄÁ½Ö±ÏßƽÐУ©
¡à¡Ï2=¡Ï4£¨Á½Ö±ÏßƽÐУ¬ÄÚ´í½ÇÏàµÈ£©
¡à¡Ï1+¡Ï2=¡Ï3+¡Ï4£¨µÈʽÐÔÖÊ£©
¶ø¡Ï3+¡Ï4=90¡ã¡ã£¨ÒÑÖª£©
¡à¡Ï1+¡Ï2=90¡ã  £¨µÈÁ¿´ú»»£©

·½·¨£¨¶þ£©½â£ºÈçͼ3£¬ÑÓ³¤AP½»Ö±Ïß bÓÚµãC£¬
¡ßa¡Îb  £¨ÒÑÖª£©
¡à¡Ï1=¡Ï5£¨Á½Ö±ÏßƽÐУ¬ÄÚ´í½ÇÏàµÈ£©
ÓÖ¡ßÈý½ÇÐÎÄڽǺÍÊÇ180¡ã£¬
¡à¡ÏBPC+¡Ï2+¡Ï5=180¡ã£¬
¶ø¡ÏBPC=90¡ã£¨ÒÑÖª£©
¡à¡Ï2+¡Ï5=180¡ã-90¡ã=90¡ã£¨µÈʽÐÔÖÊ£©
¡à¡Ï1+¡Ï2=90¡ã£¨µÈÁ¿´ú»»£©
£¨2£©Èô£¨1£©ÖÐÆäËüÌõ¼þ²»±ä£¬µ±µãPÈçͼ4λÖÃʱ£¬ÊÔÇó¡Ï2-¡Ï1µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÈçͼΪ¼×¡¢ÒÒ¡¢±ûÈý¸ù±ÊÖ±µÄľ¹÷ƽÐаڷÅÔÚµØÃæÉϵÄÇéÐΣ®ÒÑÖªÒÒÓÐÒ»²¿·ÖÖ»Óë¼×Öصü£¬ÆäÓಿ·ÖÖ»Óë±ûÖصü£¬¼×ûÓÐÓëÒÒÖصüµÄ²¿·ÖµÄ³¤¶ÈΪ1¹«³ß£¬±ûûÓÐÓëÒÒÖصüµÄ²¿·ÖµÄ³¤¶ÈΪ2¹«³ß£®ÈôÒҵij¤¶È×ÇҼס¢Òҵij¤¶ÈÏà²îx¹«³ß£¬ÒÒ¡¢±ûµÄ³¤¶ÈÏà²îy¹«³ß£¬ÔòÒҵij¤¶ÈΪ¶àÉÙ¹«³ß£¿£¨¡¡¡¡£©
A£®x+y+3B£®x+y+1C£®x+y-1D£®x+y-3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬¶þ´Îº¯Êýy=$\frac{1}{2}$x2+bx+cµÄͼÏó½»xÖáÓÚA¡¢DÁ½µã£¬²¢¾­¹ýBµã£¬ÒÑÖªAµã×ø±êÊÇ£¨2£¬0£©£¬Bµã×ø±êÊÇ£¨8£¬6£©£®
£¨1£©Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©Çóº¯ÊýͼÏóµÄ¶¥µã×ø±ê¼°DµãµÄ×ø±ê£»
£¨3£©¶þ´Îº¯ÊýµÄ¶Ô³ÆÖáÉÏÊÇ·ñ´æÔÚÒ»µãC£¬Ê¹µÃ¡÷CBDµÄÖܳ¤×îС£¿ÈôCµã´æÔÚ£¬Çó³öCµãµÄ×ø±ê£»ÈôCµã²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÏÂÁÐ˵·¨£º¢Ùͬλ½ÇÏàµÈ£»¢ÚÁ½µãÖ®¼ä£¬Ï߶Î×î¶Ì£»¢ÛƽÐÐÏß¼äµÄ¾àÀëÏàµÈ£»¢ÜÔÚͬһƽÃæÄÚ£¬Á½Ìõ²»Æ½ÐеÄÖ±ÏßÓÐÇÒÖ»ÓÐÒ»¸ö½»µã£¬ÆäÖÐÕýÈ·µÄÓУ¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÔÚÒ»´Î¾è¿î»î¶¯ÖУ¬Ä³µ¥Î»¹²ÓÐ13È˲μӾè¿î£¬ÆäÖÐСÍõ¾è¿îÊý±È13È˾è¿îµÄƽ¾ùÊý¶à2Ôª£¬¾Ý´Ë¿ÉÖª£¬´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®Ð¡ÍõµÄ¾è¿îÊý²»¿ÉÄÜ×îÉÙ
B£®Ð¡ÍõµÄ¾è¿îÊý¿ÉÄÜ×î¶à
C£®½«¾è¿îÊý°´´ÓÉÙµ½¶àÅÅÁУ¬Ð¡ÍõµÄ¾è¿îÊý¿ÉÄÜÅÅÔÚµÚÊ®¶þλ
D£®½«¾è¿îÊý°´´ÓÉÙµ½¶àÅÅÁУ¬Ð¡ÍõµÄ¾è¿îÊýÒ»¶¨±ÈµÚÆßÃû¶à

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬¾ØÐÎOABCµÄÁ½¸ö¶¥µãA£¬C·Ö±ðÔÚyÖáºÍxÖáÉÏ£¬±ßABºÍBCÓë·´±ÈÀýº¯Êýy1=$\frac{4}{x}$£¨x£¾0£©ºÍy2=$\frac{k}{x}$£¨k£¾0£¬x£¾0£©Í¼Ïó½»ÓÚE£¬FºÍµãH£¬G£®AE£ºAF=2£º3£®
£¨1£©Çó·´±ÈÀýº¯Êýy2µÄ½âÎöʽ£»
£¨2£©ÈôµãCµÄ×ø±êΪ£¨8£¬0£©£¬ÇóGHµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸