精英家教网 > 初中数学 > 题目详情

【题目】新新儿童服装店对“天使”牌服装进行调价,其中A型服装每件的价格上调了10%,B型服装每件的价格下调了5%,已知调价前买这两种服装各一件共花费140元,调价后买3件A型服装和2件B型服装共花费350元,则这两种服装在调价前每件各多少元?

【答案】调价前A型服装每件60元,B型服装每件80元.

【解析】

设调价前A型服装每件x,B型服装每件y,根据“价前买这两种服装各一件共花费140元,调价后买3件A型服装和2件B型服装共花费350元”结合调价规则,即可得出关于x、y的二元一次方程,解之即可得出结论.

解:设调价前A型服装每件x元,B型服装每件y元.

根据题意,得

解得

答:调价前A型服装每件60元,B型服装每件80元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线CBOA,∠C=A=120°EFCB上,且满足∠FOB=AOBOE平分∠COF

1)求∠EOB的度数;

2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;

3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=OBA?若存在,求出其度数;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠BAD=60°,AB=2,EDC边上一个动点,FAB边上一点,∠AEF=30°.设DE=x,图中某条线段长为y,yx满足的函数关系的图象大致如图所示,则这条线段可能是图中的(  ).

A. 线段EC B. 线段AE C. 线段EF D. 线段BF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习了正方形后,数学小组的同学对正方形进行了探究,发现:

1)如图1,在正方形ABCD中,点EBC边上任意一点(点E不与BC重合),点F在线段AE上,过点F的直线MNAE,分别交ABCD于点MN . 此时,有结论AE=MN,请进行证明;

2)如图2:当点FAE中点时,其他条件不变,连接正方形的对角线BD MN BD交于点G,连接BF,此时有结论:BF= FG,请利用图2做出证明.

3)如图3:当点E为直线BC上的动点时,如果(2)中的其他条件不变,直线MN分别交直线ABCD于点MN,请你直接写出线段AEMN之间的数量关系、线段BFFG之间的数量关系.

1 2 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(a,b),B(c,0),|a-3|+(2b-c)2+=0.

(1)求点A,B的坐标

(2)如图,点Cx轴正半轴上一点,且OC=OA,点DOC的中点,连AC,AD,请探索AD+CDAC之间的大小关系,并说明理由;

(3)如图,过点AAE⊥y轴于E,Fx轴负半轴上一动点不与(-3,0)重合 ),GEF延长线上,以EG为一边作∠GEN=45°,过AAM⊥x轴,交EN于点M,连FM,当点Fx轴负半轴上移动时,式子的值是否发生变化?若变化,求出变化的范围;若不变化,请求出其值并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一副直角三角板按如图所示放置,点EF分别在线段AB和线段AC上,∠DEF=BAC=90°,∠D=45°,∠C=30°.

(1)若∠DEA=28°,求∠DFA的度数.

(2)当∠DFC等于多少度时,EFBC?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解本校中考体育备考情况,随机抽去九年级部分学生进行了一次测试(满分60分,成绩均记为整数分)并按测试成绩(单位:分)分成四类:A类(54≤a≤60),B类(48≤a≤53),C类(36≤a≤47),D类(a≤35)绘制出如下两幅不完整的统计图,请根据图中信息,解答下列问题:

(1)请补全统计图;
(2)在扇形统计图汇总,表示成绩类别为“C”的扇形所对应的圆心角是度;
(3)该校准备召开体育考经验交流会,已知A类学生中有4人满分(男生女生各有2人),现计划从这4人中随机选出2名学生进行经验介绍,请用树状图或列表法求所抽到的2,名学生恰好是一男一女的概率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个长为、宽为的长方形,沿中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个回形正方形(如图).

(1)如图中的阴影部分面积为: (的代数式表示)

(2)观察如图,请你写出之间的等量关系是

(3)根据(2)中的结论,若,则

(4)实际上通过计算图形的阴影可以探求相应的等式,如图,请你写出这个等式

(5)如图,线段 (其中为正数),点线在段上,在线段同侧作正方形及正方形,连接得到.时,的面积记为;当时,的面积记为;当时,的面积记为;当时,的面积记为,则 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,路灯距地面8米,身高1.6米的小明从距离灯底(点O)20米的点A处,沿AO所在直线行走12米到达点B时,小明身影长度( )

A.变长2.5米
B.变短2米
C.变短2.5米
D.变短3米

查看答案和解析>>

同步练习册答案