精英家教网 > 初中数学 > 题目详情
2.已知,如图1,D是△ABC的边上一点,CN∥AB,DN交AC于点M,MA=MC.
(1)求证:四边形ADCN是平行四边形.
(2)如图2,若∠AMD=2∠MCD,∠ACB=90°,AC=BC.请写出图中所有与线段AN相等的线段(线段AN除外)

分析 (1)由CN∥AB,MA=MC,易证得△AMD≌△CMN,则可得MD=MN,即可证得:四边形ADCN是平行四边形.
(2)由∠AMD=2∠MCD,可证得四边形ADCN是矩形,又由∠ACB=90°,AC=BC,可得四边形ADCN是正方形,继而求得答案.

解答 (1)证明:∵CN∥AB,
∴∠DAM=∠NCM,
在△ADM和△CNM中,
$\left\{\begin{array}{l}{∠DAM=∠NCM}\\{MA=MC}\\{∠AMD=∠CMN}\end{array}\right.$,
∴△AMD≌△CMN(ASA),
∴MD=MN,
∴四边形ADCN是平行四边形.

(2)解:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,
∴∠MCD=∠MDC,
∴MC=MD,
∴AC=DN,
∴?ADCN是矩形,
∵AC=BC,
∴AD=BD,
∵∠ACB=90°,
∴CD=AD=BD=$\frac{1}{2}$AB,
∴?ADCN是正方形,
∴AN=AD=BD=CD=CN.

点评 此题考查了平行四边形的判定与性质、正方形的判定与性质以及全等三角形的判定与性质等知识.注意证得△AMD≌△CMN与四边形ADCN是正方形是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.如图,直线AB∥CD,直线EF与直线AB相交于点M,MN平分∠AME,若∠1=50°,则∠2的度数为(  )
A.50°B.80°C.85°D.100°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,以下结论:
①∠C=2∠A;
②BD平分∠ABC;
③S△BCD=S△BDO
④点D到线段BC的距离等于线段OD的长.
其中正确的是①②④(把所有正确结论的序号都填在横线上)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.某中学为了丰富学生的校园生活,准备从体育用品店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若买3个足球和1个篮球需230元;购买2个足球3个篮球共需340元,则购买一个足球,一个篮球各需多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列计算正确的是(  )
A.3$\sqrt{2}$-2$\sqrt{3}$=1B.$\root{3}{-27}$=-3C.|$\sqrt{2}$-$\sqrt{3}$|+$\sqrt{2}$=2$\sqrt{2}$-$\sqrt{3}$D.($\sqrt{3}$+$\frac{1}{\sqrt{3}}$)÷$\sqrt{3}$=4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图1,正方形ABCD中,O是正方形对角线的交点,点E和点F是AD边和CD边上的两点
(1)如果OE⊥OF,求证:OE=OF;
(2)如图2,点M为EF的中点,AE=DF,求证:DM=OM.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.完成下面证明:如图,B是射线AD上一点,∠DAE=∠CAE,∠DAC=∠C=∠CBE
(1)求证:∠DBE=∠CBE
证明:∵∠C=∠CBE(已知)
∴BE∥AC内错角相等,两直线平行
∴∠DBE=∠DAC两直线平行,同位角相等
∵∠DAC=∠C(已知)
∴∠DBE=∠CBE等量代换
(2)请模仿(1)的证明过程,尝试说明∠E=∠BAE.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c<0;③方程ax2+bx+c=0的两根之和大于0;④a-b+c<0,其中正确的个数是(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在△ABC中,∠C=90°,BD平分∠ABC交AC于点D,过D作DE∥BC交AB于点E,DF∥AB交BC于点F,连接EF.
(1)求证:四边形BFDE是菱形;
(2)若AB=8,AD=4,求BF的长.

查看答案和解析>>

同步练习册答案