精英家教网 > 初中数学 > 题目详情

【题目】对于二次函数 的图象与性质,下列说法正确的是( )
A.对称轴是直线 ,最小值是
B.对称轴是直线 ,最大值是
C.对称轴是直线 ,最小值是
D.对称轴是直线 ,最大值是

【答案】B
【解析】∵在二次函数 中, ,顶点坐标为(1,2),

∴其对称轴为直线 ,有最大值是2.

所以答案是:B.

【考点精析】关于本题考查的二次函数的性质和二次函数的最值,需要了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】观察:从2开始,连续的偶数相加,它们的和的情况如下

(1)当加数m个数为n时,和(S与n之间有什么样的数量关系,用公式表示出来;

(2)按此规律计算(写出必要的演算过程)

2+4+6++300的值;

162+164+166++400的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简再求值:当a=9时,求a+的值,甲乙两人的解答如下:

甲的解答为:原式=a+=a+(1-a)=1.

乙的解答为:原式=a+=a+(a-1)=2a-1=17.

两种解答中,_____的解答是错误的,错误的原因是当a=9时______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一个的方格棋盘的格里放了一枚棋子,如果规定棋子每步只能向上、向下或向左、向右走一格,那么这枚棋子走如下的步数后能到达格的是( ).

A. 7 B. 14 C. 21 D. 28

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD的对角线ACBD于点EAB=BCF为四边形ABCD外一点,且∠FCA=90°CBF=DCB

1)求证:四边形DBFC是平行四边形;

2)如果BC平分∠DBFCDB=45°BD=2,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BF为⊙O的直径,直线AC交⊙O于A,B两点,点D在⊙O上,BD平分∠OBC,DE⊥AC于点E.

(1)求证:直线DE是⊙O的切线;
(2)若 BF=10,sin∠BDE= ,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(理解新知)

如图,已知,在内部画射线,得到三个角,分别为,若这三个角中有一个角是另外一个角的2倍,则称射线的“2倍角线”

(1)角的平分线 这个角的“2倍角线”;(填“是”或“不是”)

(2)若,射线的“2倍角线”,则

(解决问题)

如图,已知,射线出发,以每秒的速度绕点逆时针旋转:射线出发,以每秒的速度绕点顺时针旋转,射线同时出发,当一条射线回到出发位置的时候,整个运动随之停止.设运动的时间为.

(3)当射线旋转到同一条直线上时,求的值;

(4)若三条射线中,一条射线恰好是以另外两条射线为边的角的“2倍角线”,直接写出所有可能的的值.(本题中所研究的角都是小于等于的角.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中,AB=6,NAB上一点,且AN=2,∠BAC的平分线交BC于点DMAD上的动点,连结BMMN,则BM+MN的最小值是(  )

A. 8 B. 10 C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°AC=4

1)若BC=2,求AB的长;

2)若BC=aAB=c,求代数式(c22﹣(a+42+4c+2a+3)的值.

查看答案和解析>>

同步练习册答案