【题目】如图,四边形ABCD中,BD与AC相交于E点,AE=CE,BC=AC=DC,则tan∠ABDtan∠ADB=_____.
【答案】
【解析】
由BC=AC=DC知A、B、D在以C为圆心的圆上,延长AC交⊙C于点F,连接DF、BF,由圆周角定理知∠ADF=∠ABF=90°,∠ABD=∠AFD、∠ADB=∠AFB,证△ABE∽△DFE、△ADE∽△BFE得=、=,从而由tan∠ABDtan∠ADB=tan∠AFDtan∠AFB====可得答案.
解:∵BC=AC=DC,
∴点A、B、D在以C为圆心的圆上,
如图所示,延长AC交⊙C于点F,连接DF、BF、
则∠ADF=∠ABF=90°,∠ABD=∠AFD、∠ADB=∠AFB,
∵∠AEB=∠DEF、∠AED=∠BEF,
∴△ABE∽△DFE,△ADE∽△BFE,
∴、,
则tan∠ABDtan∠ADB=tan∠AFDtan∠AFB
=
=
=
=,
设AE=CE=x,则AC=CF=2x,
∴AF=4x,
∴EF=AF﹣AE=3x,
则tan∠ABDtan∠ADB==,
故答案为:.
科目:初中数学 来源: 题型:
【题目】抛物线y=﹣+bx+c交x轴负半轴于点A,交y轴正半轴于点B,直线AB的解析式为y=.
(1)求b,c的值;
(2)BA沿y轴翻折180°得到BA′,F为A′B上一点,BF的垂直平分线交y轴于点L,R为x轴上一点,BF+OR=2,QR⊥FL于Q,求QR的长;
(3)在(2)的条件下,直线LF交x轴于点D,E为抛物线第一象限上一点,BE=BD,∠ABE+∠ABD=180°,求点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c的图象如图所示,对称轴为直线x=1.以下结论:①2a>-b;②4a+2b+c>0;③m(am+b)>a+b(m是大于1的实数);④3a+c<0其中正确结论的个数为( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,AB是的直径,C是上一点,连接AC,过点C作直线于D(),点E是DB上任意一点(点D、B除外),直线CE交于点F.连接AF与直线CD交于点G.
(1)求证:
(2)若点E是AD(点A除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正确的是( )
A.①②③B.①③④C.①②④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,于,,为边上一点.
(1)当时,直接写出 , .
(2)如图1,当,时,连并延长交延长线于,求证:.
(3)如图2,连交于,当且时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)解方程:;
(2)如图,在平面直角坐标系中,的三个顶点的坐标分别为、、.
①将向左平移5个单位得到,写出三顶点的坐标;
②将绕原点逆时针旋转后得到,请你画出;
③与重合部分的面积为 .(直接写出)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴交于(-1,0),(3,0)两点,则下列说法:①abc<0;②a-b+c=0;③2a+b=0;④2a+c>0;⑤若A(x1,y1),B(x2,y2),C(x3,y3)为抛物线上三点,且-1<x1<x2<1,x3>3,则y2<y1<y3,其中正确的结论是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程。
(1)求证:方程有两个不相等的实数根;
(2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为5。当△ABC是等腰三角形时,求k的值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com