精英家教网 > 初中数学 > 题目详情
10.已知△ABC中,∠BAC=90°,四边形ABDE、BCFG是两个正方形,AB的延长线交DG于P,求证:AC=2BP.

分析 过G作AC的平行线与BP的延长线交与M,利用已知条件证明△BGM≌△ABC,得到AC=BM,GM=AB,再证明△PMG≌△BDP,得到BP=BM,所以BP=$\frac{1}{2}$BM=$\frac{1}{2}$AC.

解答 解:如图,过G做AC的平行线与BP的延长线交与M,

∵∠BAC=90°,AC∥MG,
∴∠M+∠BAC=180°,
∴∠M=90°,
∵∠ABC+∠BCA=90°,∠ABC+∠PBG=90°,
∴∠BCA=∠PBG,
∵四边形BCFG是两个正方形,
∴BC=BG,
在△BGM和△ABC中,
$\left\{\begin{array}{l}{∠M=∠BAC}\\{∠MBG=∠ACB}\\{BC=BG}\end{array}\right.$
∴△BGM≌△ABC,
∴AC=BM,GM=AB,
∵四边形ABDE是正方形,
∴AB=BD,
∴GM=AD,
在△PMG和△BDP中,
$\left\{\begin{array}{l}{∠M=∠DBP=9{0}^{°}}\\{∠GMP=∠DPB}\\{MG=BD}\end{array}\right.$
∴△PMG≌△BDP,
∴BP=BM,
∴BP=$\frac{1}{2}$BM=$\frac{1}{2}$AC,
∴AC=2BP.

点评 本题考查了全等三角形的性质定理与判定定理、正方形的性质,解决本题的关键是证明三角形全等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

10.如图所示,河堤横断面堤高BC=$5\sqrt{3}$米,迎水坡面AB的坡度为$\frac{{\sqrt{3}}}{3}$(坡度是指坡面的铅直高度与水平宽度之比,又称坡比),则AC的长是(  )
A.$5\sqrt{3}$米B.10米C.15米D.10$\sqrt{3}$米

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,AB=DC,AC=DB,由此你能猜想出什么结论?并简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且∠BDA=90°,猜想线段BF、FC的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知:如图,∠1=∠3,∠E=∠C,AD=AB,求证:BC=DE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,点A、D、E在直线l上,∠BAC=90°,AB=AC,BD⊥l于D,CE⊥l于E,求证:DE=BD+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在△ABC中,∠B=60°,∠BAC、∠ACB的平分线AE、CF相交于点O.求证:
(1)OE=OF;
(2)AF+CE=AC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.观察下列等式:
①$\frac{1}{\sqrt{2}+1}$=$\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1;
②$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$;
③$\frac{1}{\sqrt{4}+\sqrt{3}}$=$\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}$=$\sqrt{4}$-$\sqrt{3}$;…
回答下列问题:
(1)仿照上列等式,写出第n个等式:$\sqrt{n+1}$-$\sqrt{n}$;
(2)利用你观察到的规律,化简:$\frac{1}{2\sqrt{3}+\sqrt{11}}$;
(3)计算:$\frac{1}{{1+\sqrt{2}}}+\frac{1}{{\sqrt{2}+\sqrt{3}}}+\frac{1}{{\sqrt{3}+2}}+…+\frac{1}{{\sqrt{2014}+\sqrt{2015}}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:
(1)($\sqrt{13}$+3)($\sqrt{13}$-3)
(2)$\sqrt{32}$-3$\sqrt{\frac{1}{2}}$$+\sqrt{2}$
(3)$\frac{\sqrt{8}+\sqrt{18}}{\sqrt{2}}$
(4)($\sqrt{\frac{4}{3}}$+$\sqrt{3}$)×$\sqrt{6}$.

查看答案和解析>>

同步练习册答案