精英家教网 > 初中数学 > 题目详情
(2005•茂名)下列四个函数:
①y=kx(k为常数,k>0)
②y=kx+b(k,b为常数,k>0)
③y=(k为常数,k>0,x>0)
④y=ax2(a为常数,a>0)
其中,函数y的值随着x值得增大而减少的是( )
A.①
B.②
C.③
D.④
【答案】分析:充分运用一次函数、反比例函数、二次函数的增减性,结合自变量的取值范围,逐一判断.
解答:解:①y=kx(k为常数,k>0),正比例函数,故y随着x增大而增大,错误;
②y=kx+b(k,b为常数,k>0),一次函数,故y随着x增大而增大,错误;
③y=(k为常数,k>0),反比例函数,在每个象限里,y随x的增大而减小,正确;
④y=ax2(a为常数,a>0)当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x的增大而减小,错误.
故选C.
点评:本题综合考查二次函数、一次函数、反比例函数、正比例函数的增减性(单调性),是一道难度中等的题目.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《数据分析》(05)(解析版) 题型:解答题

(2005•茂名)某校要从小王和小李两名同学中挑选一人参加全国数学竞赛,在最近的五次选拔测试中,他俩的成绩分别如下表:
次数
成绩(分)
姓名
12345
小王60751009075
小李7090808080
根据上表解答下列问题:
(1)完成下表:
姓名极差(分)平均成绩(分)中位数(分)众数(分)方差
小王40807575190
小李
(2)在这五次测试中,成绩比较稳定的同学是谁若将80分以上(含80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?
(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2005•茂名)如图,一张边长为16cm的正方形硬纸板,把它的四个角都剪去一个边长为xcm的小正方形,然后把它折成一个无盖的长方体,设长方体的容积为Vcm3,请回答下列问题:
(1)若用含有X的代数式表示V,则V=______;
(2)完成下表:

(3)观察上表,容积V的值是否随x值得增大而增大?当x取什么值时,容积V的值最大?

查看答案和解析>>

科目:初中数学 来源:2010年湖北省黄冈市数学中考精品试卷之四(解析版) 题型:解答题

(2005•茂名)某校要从小王和小李两名同学中挑选一人参加全国数学竞赛,在最近的五次选拔测试中,他俩的成绩分别如下表:
次数
成绩(分)
姓名
12345
小王60751009075
小李7090808080
根据上表解答下列问题:
(1)完成下表:
姓名极差(分)平均成绩(分)中位数(分)众数(分)方差
小王40807575190
小李
(2)在这五次测试中,成绩比较稳定的同学是谁若将80分以上(含80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?
(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由.

查看答案和解析>>

科目:初中数学 来源:2005年广东省茂名市中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•茂名)某校要从小王和小李两名同学中挑选一人参加全国数学竞赛,在最近的五次选拔测试中,他俩的成绩分别如下表:
次数
成绩(分)
姓名
12345
小王60751009075
小李7090808080
根据上表解答下列问题:
(1)完成下表:
姓名极差(分)平均成绩(分)中位数(分)众数(分)方差
小王40807575190
小李
(2)在这五次测试中,成绩比较稳定的同学是谁若将80分以上(含80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?
(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由.

查看答案和解析>>

科目:初中数学 来源:2005年广东省茂名市中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•茂名)如图,一张边长为16cm的正方形硬纸板,把它的四个角都剪去一个边长为xcm的小正方形,然后把它折成一个无盖的长方体,设长方体的容积为Vcm3,请回答下列问题:
(1)若用含有X的代数式表示V,则V=______;
(2)完成下表:

(3)观察上表,容积V的值是否随x值得增大而增大?当x取什么值时,容积V的值最大?

查看答案和解析>>

同步练习册答案