精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠ACB=90°,OA、OB的长分别是一元二次方程x2﹣25x+144=0的两个根(OA<OB),点D是线段BC上的一个动点(不与点B、C重合),过点D作直线DE⊥OB,垂足为E.

(1)求点C的坐标.
(2)连接AD,当AD平分∠CAB时,求直线AD的解析式.
(3)若点N在直线DE上,在坐标系平面内,是否存在这样的点M,使得C、B、N、M为顶点的四边形是正方形?若存在,请直接写出点M的坐标;若不存在,说明理由.
(1)C(0,12)。
(2)
(3)存在点M,使得C、B、N、M为顶点的四边形是正方形,
点M的坐标是(28,16)或(14,14)或(﹣12,﹣4)或(2,﹣2)。

试题分析:(1)解一元二次方程,求得OA、OB的长,证△AOC∽△COB,推出OC2=OA•OB,即可得出答案。
解x2﹣25x+144=0得x=9或x=16,
∵OA、OB的长分别是一元二次方程x2﹣25x+144=0的两个根(OA<OB),
∴OA=9,OB=16。
在Rt△AOC中,∠CAB+∠ACO=90°,
在Rt△ABC中,∠CAB+∠CBA=90°,
∴∠ACO=∠CBA。
∵∠AOC=∠COB=90°,∴△AOC∽△COB。∴OC2=OA•OB。∴OC=12,
∴C(0,12)。
(2)应用相似三角形求得点D 的坐标,应用待定系数法即可求得直线AD的解析式。
在Rt△AOC和Rt△BOC中,∵OA=9,OC=12,OB=16,∴AC=15,BC=20。
∵DE⊥AB,∴∠ACD=∠AED=90°。
又∵AD平分∠CAB,AD=AD,∴△ACD≌△AED。∴AE=AC=15。
∴OE=AE﹣OA=15﹣9=6,BE=10。
∵∠DBE=∠ABC,∠DEB=∠ACB=90°,∴△BDE∽△BAC。
,即,解得
∴D(6,)。
设直线AD的解析式是y=kx+b,
将A(﹣9,0)和D(6,)代入得:
,解得
∴直线AD的解析式是:
(3)存在点M,使得C、B、N、M为顶点的四边形是正方形。
① 以BC为对角线时,作BC的垂直平分线交BC于Q,交x轴于F,在直线FQ上取一点M,使∠CMB=90°,则符合此条件的点有两个,

BQ=CQ=BC=10,
∵∠BQF=∠BOC=90°,∠QBF=∠CBO,
∴△BQF∽△BOC。∴
∵BQ=10,OB=16,BC=20,∴BF=
∴OF=16﹣=。∴F(,0)。
∵OC=12,OB=16,Q为BC中点,∴Q(8,6)。
设直线QF的解析式是y=ax+c,
代入得:,解得
∴直线FQ的解析式是:
设M的坐标是(x,),
根据CM=BM和勾股定理得:(x﹣0)2+(﹣12)2=(x﹣16)2+(﹣0)2
解得x1=14,x2=2。
∴M的坐标是(14,14),(2,﹣2)。
②以BC为一边时,过B作BM3⊥BC,且BM3=BC=20,过M3Q⊥OB于Q,还有一点M4,CM4=BC=20,CM4⊥BC,

则∠COB=∠M3B=∠CBM3=90°。
∴∠BCO+∠CBO=90°,
∠CBO+∠M3BQ=90°。
∴∠BCO=∠M3BQ。
∵在△BCO和△M3BQ中,

∴△BCO≌△M3BQ(AAS)。
∴BQ=CO=12,QM3=OB=16,
OQ=16+12=28,
∴M3的坐标是(28,16)。
同法可求出CT=OB=16,M4T=OC=12,OT=16﹣12=4,
∴M4的坐标是(﹣12,﹣4)。
综上所述,存在点M,使得C、B、N、M为顶点的四边形是正方形,
点M的坐标是(28,16)或(14,14)或(﹣12,﹣4)或(2,﹣2)。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,,x2+6x﹣27=0,x2+4x+4=0,都是“偶系二次方程”.
(1)判断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由;
(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若关于x的一元二次方程有两个不相等的实数根,则m的取值范围是
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知方程x2﹣2x﹣1=0,则此方程
A.无实数根B.两根之和为﹣2
C.两根之积为﹣1D.有一根为

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2013年四川攀枝花3分)已知⊙O1和⊙O2的半径分别是方程x2﹣4x+3=0的两根,且两圆的圆心距等于4,则⊙O1与⊙O2的位置关系是【   】
A.外离B.外切C.相交D.内切

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知x=3是方程x2﹣6x+k=0的一个根,则k=   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列方程中,关于x的一元二次方程是(  )
A.3(x+1)2=2(x+1)B.C.ax2+bx+c=0D.x2+2x=x2﹣1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

解下列一元二次方程:(1);(2)

查看答案和解析>>

科目:初中数学 来源:不详 题型:计算题

解方程:x2-1= 4x

查看答案和解析>>

同步练习册答案