【题目】如图,在中,,,点在线段上运动(不与、重合),连接,作,交线段于.
(1)当时,= ,= ;点从向运动时,逐渐 (填“增大”或“减小”);
(2)当等于多少时,,请说明理由;
(3)在点的运动过程中,的形状可以是等腰三角形吗?若可以,请直接写出的度数.若不可以,请说明理由.
【答案】(1)40°,100°;减小;(2)当DC=2时,△ABD≌△DCE;理由见解析;(3)当∠ADB=110°或80°时,△ADE是等腰三角形.
【解析】
(1)利用平角的定义可求得∠EDC的度数,再根据三角形内角定理即可求得∠DEC的度数,利用三角形外角的性质可判断∠BDA的变化情况;
(2)利用∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC得出∠BAD=∠EDC,进而求出△ABD≌△DCE;
(3)根据等腰三角形的判定以及分类讨论得出即可.
(1)∵∠BDA=100°,∠ADE=40°,∠BDA+∠ADE+∠EDC=180°,
∴∠EDC=180°-100°-40°=40°,
∵∠EDC+∠DEC+∠C=180°,∠C=40°,
∴∠DEC=180°-40°-40°=100°;
∵∠BDA=∠C+∠DAC,∠C=40°,
点D从B向C运动时,∠DAC逐渐减小,
∴点D从B向C运动时,∠BDA逐渐减小,
故答案为:40°,100°;减小;
(2)当DC=2时,△ABD≌△DCE;
理由:∵∠ADE=40°,∠B=40°,
又∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC.
∴∠BAD=∠EDC.
在△ABD和△DCE中,
,
∴△ABD≌△DCE(ASA);
(3)①当AD=AE时,∠ADE=∠AED=40°,
∵∠AED>∠C,
∴此时不符合;
②当DA=DE时,即∠DAE=∠DEA=(180°-40°)=70°,
∵∠BAC=180°-40°-40°=100°,
∴∠BAD=100°-70°=30°;
∴∠BDA=180°-30°-40°=110°;
③当EA=ED时,∠ADE=∠DAE=40°,
∴∠BAD=100°-40°=60°,
∴∠BDA=180°-60°-40°=80°;
∴当∠ADB=110°或80°时,△ADE是等腰三角形.
科目:初中数学 来源: 题型:
【题目】某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图
(1)①在扇形图中,C部门所对应的圆心角的度数为
②在统计表中,b= ,c=
(2)求这个公司平均每人所创年利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A、B重合),另一直角边与∠CBM的平分线BF相交于点F.
(1)如图1,当点E在AB边得中点位置时:
①通过测量DE、EF的长度,猜想DE与EF满足的数量关系是 .
②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是 ,请证明你的猜想.
(2)如图2,当点E在AB边上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为两相应点间的距离(单位:千米).一位游客从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为小时.
(1)当他沿着路线A→D→C→E→A游览回到A处时,共用了4小时,求CE的长;
(2)若此学生打算从A处出发,步行速度与景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,说明这样设计的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线过点A(0,6),点D(8,0),直线:与轴交于点C,两直线,相交于点B.
(1)求直线的解析式和点B的坐标;
(2)连接AC,求的面积;
(3)若在AD上有一点P,把线段AD分成2:3的两部分时,请直接写出点P的坐标(不必写解答过程).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小王上周五在股市上以收盘价(收市时的价格)每股25元买进某公司股票1 000股,在接下来的一周交易日内,小王记下该股票每日收盘价相比前一天的涨跌情况:(单位:元)
根据上表回答问题:
(1)星期二收盘时,该股票每股______元.
(2)本周内股票收盘时的最高价______元.
(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费,若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com