【题目】一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米.两车行驶的时间为x小时,y1、y2关于x的函数图象如图所示:
(1)根据图象,直接写出y1,y2关于x的函数关系式;
(2)当x为何值时,两车相遇?
(3)甲、乙两地间有A、B两个加油站,相距280千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.
【答案】(1)y1=60x(0≤x≤10),y2=﹣100x+600(0≤x≤6);(2)当x为小时时,两车相遇;(3)A加油站到甲地距离为120km或330km
【解析】
(1)直接运用待定系数法就可以求出y1、y2关于x的函数图关系式;
(2)根据y1=y2列等式,求出即可;
(3)分A加油站在甲地与B加油站之间,B加油站在甲地与A加油站之间两种情况列出方程求解即可.
(1)设y1=k1x,由图可知,函数图象经过点(10,600),
∴10k1=600,
解得:k1=60,
∴y1=60x(0≤x≤10),
设y2=k2x+b,由图可知,函数图象经过点(0,600),(6,0),
则,
解得:,
∴y2=﹣100x+600(0≤x≤6);
(2)由题意,得
60x=﹣100x+600,
x=;
答:当x为h时,两车相遇;
(3)由题意,得
①当A加油站在甲地与B加油站之间时,(﹣100x+600)﹣60x=280,
解得x=2,
此时,A加油站距离甲地:60×2=120km,
②当B加油站在甲地与A加油站之间时,60x﹣(﹣100x+600)=280,
解得x=5.5,此时,A加油站距离甲地:60×5.5=330km,
综上所述,A加油站到甲地距离为120km或330km.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=﹣x+2的图象交x轴、y轴分别于点A,B,交直线y=kx于P.
(1)求点A、B的坐标;
(2)若OP=PA,求P点坐标及k的值.
(3)在(2)的条件下,C是直线BP上一动点,CE⊥x轴于E,交直线DP于D,若CD=3ED,直接写出C点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=50°,∠B=∠C,点D,E,F分别在边BC,CA,AB上,且满足BF=CD,BD=CE,∠BFD=30°,则∠FDE的度数为( )
A.75°B.80°C.65°D.95°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.
(1)求证:直线CD是⊙O的切线;
(2)若DE=2BC,AD=5,求OC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人以相同路线前往距离单位10km的培训中心参加学习,图中,分别表示甲、乙两人前往目的地所走的路程s(千米)随时间t(分)变化的函数图象,以下说法:①甲比乙提前12分到达;②甲的平均速度为15千米/时;③甲乙相遇时,乙走了6千米;④乙出发6分钟后追上甲.其中正确的有( )
A. 4个B. 3个C. 2个D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图等边△ABC,D是AC的中点,E在BC的延长线上,且CE=CD,过D作DF⊥BE于点E.
(Ⅰ)求证:△BDE为等腰三角形;
(Ⅱ)请猜想FC与BF间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°。
(1)求AC的长度;
(2)如果在第二象限内有一点,试求四边形AOPB的面积S与m之间的函数关系式,并求当△APB与△ABC面积相等时m的值。
(3)是否存在使△QAB是等腰三角形并且在坐标轴上的点Q?若存在,请写出点Q所有可能的坐标;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,锐角△ABC中,D、E分别是AB、AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于点F.若∠BAC=35°,则∠BFC的大小是( )
A. 105° B. 110° C. 100° D. 120°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com