【题目】如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).
(1)当直线AB经过点C时,点O到直线AB的距离是 ;
(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是 .
【答案】(1) ;(2)12.
【解析】
试题分析:(1)当直线AB经过点C时,点A与点C重合,当x=2时,y=﹣2+m=0,即m=2,所以直线AB的解析式为y=﹣x+2,则B(0,2),∴OB=OA=2,AB=.
设点O到直线AB的距离为d,由S△OAB=OA2=
ABd,得:4=
d,则d=
.故答案为:
.
(2)作OD=OC=2,连接CD.则∠PDC=45°,如图,由y=﹣x+m可得A(m,0),B(0,m).
所以OA=OB,则∠OBA=∠OAB=45°.
当m<0时,∠APC>∠OBA=45°,所以,此时∠CPA>45°,故不合题意.
所以m>0.
因为∠CPA=∠ABO=45°,所以∠BPA+∠OPC=∠BAP+∠BPA=135°,即∠OPC=∠BAP,则△PCD∽△APB,所以,即
,解得m=12.故答案为:12.
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,四边形各顶点的坐标分别为
,动点
与
同时从
点出发,运动时间为
秒,点
沿
方向以
单位长度/秒的速度向点
运动,点
沿折线
运动,在
上运动的速度分别为
(单位长度/秒).当
中的一点到达
点时,两点同时停止运动.
(1)求所在直线的函数表达式;
(2)如图2,当点在
上运动时,求
的面积
关于
的函数表达式及
的最大值;
(3)在,
的运动过程中,若线段
的垂直平分线经过四边形
的顶点,求相应的
值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.
(1)求证:∠A=∠ADE;
(2)若AD=16,DE=10,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景
如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形。
类比研究
如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)。
(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;
(2)△DEF是否为正三角形?请说明理由;
(3)进一步探究发现,△ABD的三边存在一定的等量关系,设,
,
,请探索
,
,
满足的等量关系。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com