精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC 为等腰直角三角形,∠ACB90°,点 M AB 边的中点,点 N 为射线 AC 上一点,连接 BN,过点 C CDBN 于点 D,连接 MD,作∠BNE=∠BNA,边 EN 交射线 MD 于点 E,若 AB20MD14,则 NE 的长为___.

【答案】

【解析】

连接CM,过点MMFBDF,根据等腰直角三角形的性质求出BMBC,证出CMBD四点共圆,根据圆周角定理的推论和等腰三角形的判定证出△DMF为等腰直角三角形,利用勾股定理和锐角三角函数求出BDBN,然后证出△NDE∽△MDB列出比例式即可求出结论.

解:连接CM,过点MMFBDF

ABC 为等腰直角三角形,∠ACB90°,点 M AB 边的中点,AB20

BM=AB=10AC=BC=20,∠CMB=90°,∠BCM=ACB45°

CDBN

∴∠CDB=90°

∴∠CDB+∠CMB=180°

CMBD四点共圆

∴∠MDB=BCM=45°,∠DCB=BMD

∴△DMF为等腰直角三角形

MD14

MF=DF=14

RtBMF中,BF=

BD=BFDF=16

cosCBN=

解得:BN=25

DN=BNBD=9

∵∠BNE=∠BNA,而∠DCN∠BNA=90°

∴∠BNE+∠DCN=90°

∵∠DCN+∠DCB=90°

∴∠BNE=DCB

∴∠BNE=BMD

∵∠NDE=MDB

∴△NDE∽△MDB

解得:NE=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系x0y中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象交于二、四象限内的AB两点,与x轴交于C点,点B的坐标为(6n).线段OA=5Ex轴上一点,且sinAOE=

1)求该反比例函数和一次函数的解析式;

2)求△AOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在ABCD中,AB=2BC=6,∠D=60°,点EB点出发沿着线段BC每秒1个单位长度的速度向C运动,同时点FB点出发沿着射线BC每秒2单位长度的速度向C运动,以EF为边在直线BC上方作等边△EFG,设点EF的运动时间为t秒,其中0t4

1)当t=    秒时,点G落在线段AD上;

2)如图2,连接BG,试说明:无论t为何值,BG始终平分∠ABC

3)求△EFGABCD重叠部分面积yt之间的函数关系式,当t取何值时,y有最大值?并求出y的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠BAC90°,∠B60°,△ADE可以由△ABC绕点 A顺时针旋转90°得到,点D 与点B是对应点,点E与点C是对应点),连接CE,则∠CED的度数是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10

1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;

2)求销售单价为多少元时,该文具每天的销售利润最大;

3)商场的营销部结合上述情况,提出了AB两种营销方案

方案A:该文具的销售单价高于进价且不超过30元;

方案B:每天销售量不少于10件,且每件文具的利润至少为25

请比较哪种方案的最大利润更高,并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:四边形 ABCD 内接于⊙O,连接 ACBD,∠BAD+2ACB=180°

1)如图 1,求证:点 A 为弧 BD 的中点;

2)如图 2,点 E 为弦 BD 上一点,延长 BA 至点 F,使得 AF=AB,连接 FE AD 于点 P,过点 P PHAF 于点 HAF=2AH+AP,求证:AH:AB=PE:BE

3)在(2)的条件下,如图 3,连接 AE,并延长 AE 交⊙O 于点 M,连接 CM,并延长 CM AD 的延长线于点 N,连接 FD,∠MND=MEDDF=12sinACBMN=,求 AH 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知是关于的函数,若其函数图象经过点,则称点为函数图象上的“郡点”,例如:上存在“郡点”

1)直线___________(填写直线解析式)上的每一个点都是“郡点”,双曲线上的“郡点”是___________

2)若抛物线上有“郡点”,且“郡点”(点和点可以重合)的坐标为,求的最小值.

3)若函数的图象上存在唯一的一个郡点,且当的最小值,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABO的直径,弦EFAB于点C,过点FO的切线交AB的延长线于点D

1)已知∠Aα,求∠D的大小(用含α的式子表示);

2)取BE的中点M,连接MF,请补全图形;若∠A30°,MF,求O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABO的直径,点DAB的延长线上,CEO上的两点,CECB,∠BCD=∠CAE,延长AEBC的延长线于点F

求证:(1CDO的切线;

2CECF

查看答案和解析>>

同步练习册答案