【题目】如图,△ABC 为等腰直角三角形,∠ACB=90°,点 M 为 AB 边的中点,点 N 为射线 AC 上一点,连接 BN,过点 C 作 CD⊥BN 于点 D,连接 MD,作∠BNE=∠BNA,边 EN 交射线 MD 于点 E,若 AB=20,MD=14,则 NE 的长为___.
【答案】
【解析】
连接CM,过点M作MF⊥BD于F,根据等腰直角三角形的性质求出BM、BC,证出C、M、B、D四点共圆,根据圆周角定理的推论和等腰三角形的判定证出△DMF为等腰直角三角形,利用勾股定理和锐角三角函数求出BD和BN,然后证出△NDE∽△MDB列出比例式即可求出结论.
解:连接CM,过点M作MF⊥BD于F
∵△ABC 为等腰直角三角形,∠ACB=90°,点 M 为 AB 边的中点,AB=20,
∴BM=AB=10,AC=BC=20,∠CMB=90°,∠BCM=∠ACB=45°
∵CD⊥BN
∴∠CDB=90°
∴∠CDB+∠CMB=180°
∴C、M、B、D四点共圆
∴∠MDB=∠BCM=45°,∠DCB=∠BMD
∴△DMF为等腰直角三角形
∵MD=14,
∴MF=DF=14
在Rt△BMF中,BF=
∴BD=BF+DF=16
∵cos∠CBN=
即
解得:BN=25
∴DN=BN-BD=9
∵∠BNE=∠BNA,而∠DCN+∠BNA=90°
∴∠BNE+∠DCN=90°
∵∠DCN+∠DCB=90°
∴∠BNE=∠DCB
∴∠BNE=∠BMD
∵∠NDE=∠MDB
∴△NDE∽△MDB
∴
即
解得:NE=
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系x0y中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,n).线段OA=5,E为x轴上一点,且sin∠AOE=.
(1)求该反比例函数和一次函数的解析式;
(2)求△AOC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在ABCD中,AB=2,BC=6,∠D=60°,点E从B点出发沿着线段BC每秒1个单位长度的速度向C运动,同时点F从B点出发沿着射线BC每秒2单位长度的速度向C运动,以EF为边在直线BC上方作等边△EFG,设点E、F的运动时间为t秒,其中0<t≤4.
(1)当t= 秒时,点G落在线段AD上;
(2)如图2,连接BG,试说明:无论t为何值,BG始终平分∠ABC;
(3)求△EFG与ABCD重叠部分面积y与t之间的函数关系式,当t取何值时,y有最大值?并求出y的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△ADE可以由△ABC绕点 A顺时针旋转90°得到,点D 与点B是对应点,点E与点C是对应点),连接CE,则∠CED的度数是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件
(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元
请比较哪种方案的最大利润更高,并说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:四边形 ABCD 内接于⊙O,连接 AC、BD,∠BAD+2∠ACB=180°.
(1)如图 1,求证:点 A 为弧 BD 的中点;
(2)如图 2,点 E 为弦 BD 上一点,延长 BA 至点 F,使得 AF=AB,连接 FE 交 AD 于点 P,过点 P 作 PH⊥AF 于点 H,AF=2AH+AP,求证:AH:AB=PE:BE;
(3)在(2)的条件下,如图 3,连接 AE,并延长 AE 交⊙O 于点 M,连接 CM,并延长 CM 交 AD 的延长线于点 N,连接 FD,∠MND=∠MED,DF=12﹒sin∠ACB,MN=,求 AH 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知是关于的函数,若其函数图象经过点,则称点为函数图象上的“郡点”,例如:上存在“郡点”.
(1)直线___________(填写直线解析式)上的每一个点都是“郡点”,双曲线上的“郡点”是___________;
(2)若抛物线上有“郡点”,且“郡点”、(点和点可以重合)的坐标为、,求的最小值.
(3)若函数的图象上存在唯一的一个“郡点”,且当,的最小值,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦EF⊥AB于点C,过点F作⊙O的切线交AB的延长线于点D.
(1)已知∠A=α,求∠D的大小(用含α的式子表示);
(2)取BE的中点M,连接MF,请补全图形;若∠A=30°,MF=,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.
求证:(1)CD是⊙O的切线;
(2)CE=CF;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com