【题目】已知:sin(﹣x)=﹣sinx, cos(﹣x)=cosx,sin(x+y)=sinxcosy+cosxsiny,则下列各式不成立的是( )
A. cos(﹣45°)= B. sin75°=
C. sin2x=2sinxcosx D. sin(x﹣y)=sinxcosy﹣cosxsiny
科目:初中数学 来源: 题型:
【题目】如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.
(1)求证:△OCD是等边三角形.
(2)当α=150°时,试判断△AOD的形状(按角分类),并说明理由.
(3)求∠OAD的度数.
(4)探究:当α= 时,△AOD是等腰三角形.(不必说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m3污水所用的时间比现在多用10小时.
(1)原来每小时处理污水量是多少m2?
(2)若用新设备处理污水960m3,需要多长时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,三角形ABC中,D是BC边上一点.
(1)过点D作AB、AC的平行线分别交AB于点E,交AC于点F;
(2)说明:∠EDF=∠A;
(3)说明:∠A+∠B+∠C=180°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.
(1)求S与x之间的函数关系式,并写出自变量x的取值范围;
(2)设计费能达到24000元吗?为什么?
(3)当x是多少米时,设计费最多?最多是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:
营业员A:月销售件数200件,月总收入3400元;
营业员B:月销售件数300件,月总收入3700元;
假设营业员的月基本工资为x元,销售每件服装奖动y元.
(1)求x和y的值;
(2)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲服装3件,乙服装2件,丙服袋1件共需390元:如果购买甲服装1件,乙服装2件,丙服装3件共需370元.某顾客想购买甲、乙、丙服装各一件共需多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠MON=90°,正方形ABCD的顶点A、B分别在OM、ON上,AB=13,OB=5,E为AC上一点,且∠EBC=∠CBN,直线DE与ON交于点F.
(1)求证BE=DE;
(2)判断DF与ON的位置关系,并说明理由;
(3)△BEF的周长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年5月26日振奋人心的“数博会”在我省贵阳市隆重召开。某校组织部分师生前往参观学习,租用A、B两种型号的旅游车共8辆。一辆A型车可坐40人,一辆B型车可坐35人。
(1)若前往参观的师生共310人,为了刚好将全部师生送达目的地,应分别租用A、B两种型号的旅游车各多少辆?
(2)若A型号的车每辆租金需220元,B型号的车每辆租金需160元,学校要求总租车费用不超过1540元,那么最多可租用多少辆A型号的旅游车?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小欣设计的“利用等腰三角形做菱形”的尺规作图过程.
己知:等腰
求作:点,使得四边形为菱形.
做法:①作的角平分线,交线段于点;
②以点为圆心,长为半径圆弧,交的延长线于点;
③连接,所以四边形为菱形,点即为所求.
根据小新设计的尺规作图过程.
(1)使用直尺和圆规补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:平分,
(______________________________________)(填推理的依据)
∴四边形为平行四边形(______________________________________)(填推理的依据)
,
∴四边形为菱形(______________________________________)(填推理的依据)
(3)请你设计一种不同于小欣的,利用等腰(其中)作菱形的方法.
要求:写出简要思路,并尺规作图.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com