精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD,将边CD绕点C顺时针旋转60°,得到线段CE,连接DEAEBD交于点F

(1)求∠AFB的度数;

(2)求证:BFEF

(3)连接CF,直接用等式表示线段ABCFEF的数量关系.

【答案】(1)∠AFB=60°;(2)见解析;(3)AB+CF=2EF

【解析】

(1)根据正方形的性质得∠ADB45°,再有旋转图形的边相等,则对应的底角也相等求出∠DAE=∠DEA15°,从而得到∠AFB60°.

(2)由等边三角形及∠DEA15°,得到∠CEF=∠CBF45°,再结合已知根据SAS证明ADF≌△CDF,再由角的代换证明出ECF≌△BCF,从而证明BFEF.

(3CCGBDG,由已知求出∠GCF30°从而得到CF2FGFGx,从而求出AB+CF2x+2xEFBFBG+FGx+x,最终得到AB+CF2EF.

解:(1)∵四边形ABCD是正方形,

∴∠ADBADC45°

由旋转得:CDCE,∠DCE60°

∴△DCE是等边三角形,

CDDEAD,∠ADE90°+60°150°

∴∠DAE=∠DEA15°

∴∠AFB=∠FAD+ADB15°+45°60°

2)连接CF

∵△CDE是等边三角形,

∴∠DEC60°

∵∠DEA15°

∴∠CEF=∠CBF45°

∵四边形ABCD是正方形,

ADCD,∠ADF=∠CDF45°

DFDF

∴△ADF≌△CDFSAS),

∴∠DAF=∠DCF15°

∴∠FCB90°15°75°,∠ECF60°+15°75°

∴∠FCB=∠ECF

CFCF

∴△ECF≌△BCFSAS),

BFEF

3AB+CF2EF,理由是:

CCGBDG

∵∠CBD45°

∴△CGB是等腰直角三角形,

∵∠BCF75°

∴∠GCF30°

CF2FG

FGx,则CF2xCGBGx

BCABCGx

AB+CF2x+2xEFBFBG+FGx+x

AB+CF2EF

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某地有一座圆弧形拱桥,

(1)如图1,请用尺规作出圆弧所在圆的圆心O;

(2)如图2,过点O作OC⊥AB于点D,交圆弧于点C,CD=2.4 m.桥下水面宽度AB为7.2 m,现有一艘宽3 m、船舱顶部为方形并高出水面2 m的货船要经过拱桥,请通过计算说明此货船能否顺利通过这座拱桥.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把这两块三角板放置在平面直角坐标系中,且OB=3.

(1)若某反比例函数的图象的一个分支恰好经过点A,求这个反比例函数的解析式;

(2)若把含30°角的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好落在x轴上,点A落在点A′处,试求图中阴影部分的面积.(结果保留π)

【答案】(1)反比例函数的解析式为y=;(2)S阴影=6π-.

【解析】分析:(1)根据tan30°=,求出AB,进而求出OA,得出A的坐标,设过A的双曲线的解析式是y=,把A的坐标代入求出即可;(2)求出∠AOA′,根据扇形的面积公式求出扇形AOA′的面积,求出OD、DC长,求出△ODC的面积,相减即可求出答案.

本题解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3

∴AB=OB·tan 30°=3.

∴点A的坐标为(3,3).

设反比例函数的解析式为y= (k≠0),

∴3,∴k=9,则这个反比例函数的解析式为y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=

∴OA=6.

由题意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S阴影=S扇形AOA′-SODC=6π.

点睛:本题考查了勾股定理、待定系数法求函数解析式、特殊角的三角函数值、扇形的面积及等腰三角形的性质,本题属于中档题,难度不大,将不规则的图形的面积表示成多个规则图形的面积之和是解答本题的关键.

型】解答
束】
26

【题目】矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.

(1)如图①,已知折痕与边BC交于点O,连接AP,OP,OA.

① 求证:△OCP∽△PDA;

② 若△OCP与△PDA的面积比为1:4,求边AB的长.

(2)如图②,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M,N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点DBC上任意一点,将线段AD绕点A逆时针方向旋转,得到线段AE,连结EC

依题意补全图形;

的度数;

,将射线DA绕点D顺时针旋转EC的延长线于点F,请写出求AF长的思路.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点B处测得楼顶A的仰角为22°,他正对着城楼前进21米到达C处,再登上3米高的楼台D处,并测得此时楼顶A的仰角为45°

1)求城门大楼的高度;

2)每逢重大节日,城门大楼管理处都要在AB之间拉上绳子,并在绳子上挂一些彩旗,请你求出AB之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈cos22°≈tan22°≈

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于反比例函数yk≠0),下列所给的四个结论中,正确的是(  )

A. 若点(24)在其图象上,则(﹣24)也在其图象上

B. k0时,yx的增大而减小

C. 过图象上任一点Px轴、y轴的垂线,垂足分别AB,则矩形OAPB的面积为k

D. 反比例函数的图象关于直线yxy=﹣x成轴对称

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,CEBDECF平分∠DCEDB交于点F

1)求证:BFBC

2)若AB4cmAD3cm,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,BAD=90°,点EBC的延长线上,且∠DEC=BAC.

(1)求证:DE是⊙O的切线;

(2)若ACDE,当AB=8,CE=2时,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小王在长江边某瞭望台D处测得江面上的渔船A的俯角为40°,若DE3米,CE2米,CE平行于江面AB,迎水坡BC的坡度i10.75,坡长BC10米,则此时AB的长约为多少米?(结果精确到0.1,参考数据:sin40°≈0.64cos40°≈0.77tan40°≈0.84

查看答案和解析>>

同步练习册答案