精英家教网 > 初中数学 > 题目详情
18.如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于点F,连接BF.
(1)求证:△AEF≌△DEC;
(2)若D是BC的中点,则图中FB和AD有怎样的位置关系和数量关系,并请说明理由.

分析 (1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等;
(2)由全等三角形的性质得出FA=DC,证出FA=BD,证明四边形AFBD是平行四边形,即可得出结论.

解答 (1)证明:∵AF∥BC,
∴∠AFE=∠DCE,
∵点E为AD的中点,
∴AE=DE,
在△AEF和△DEC中,$\left\{\begin{array}{l}{∠AFE=∠DCE}&{\;}\\{∠AEF=∠DEC}&{\;}\\{AE=AD}&{\;}\end{array}\right.$,
∴△AEF≌△DEC(AAS);

(2)解:若D是BC的中点,则图中的FB和AD平行且相等. 理由如下:
由(1)知△AEF≌△DEC,
∴FA=DC,
∵D是BC的中点,
∴BD=DC,
∴FA=BD,
∵AF∥BC,
∴四边形AFBD是平行四边形,
∴FB∥AD,且FB=AD.

点评 本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.已知,在梯形ABCD中,AD∥BC,AD=4,AB=CD=6,∠B=60°,那么下底BC的长为10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.某校教导处为了了解本校初二学生一天中做家庭作业所用的大致时间(时间以整数记,单位:分钟),对本校的初二学生做了抽样调查,并把调查得到的所有数据(时间)进行整理,分成五个时间段,绘制成统计图(如图所示).请结合统计图中提供的信息,回答下列问题:
(1)本次所抽取样本的容量是多少?
(2)在被调查的学生中,一天做家庭作业所用的大致时间超过120分钟(不包括120分钟)的人数占被调查学生总人数的百分之几?
(3)这次调查得到的所有数据的中位数落在了五个时间段中的哪一段内?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.计算:
(1)|-5|+(π-3.1)0-($\frac{1}{2}$)-1+$\sqrt{4}$;
(2)1-$\frac{a}{b}$÷$\frac{3a}{2b}$•$\frac{2b}{3a}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=6,BC=8,tanD=2,点E是射线CD上一动点(不与点C重合),将△BCE沿着BE进行翻折,点C的对应点记为点F,
(1)如图1,当点F落在梯形ABCD的中位线MN上时,求CE的长;
(2)如图2,当点E再线段CD上时,设CE=x,$\frac{{S}_{△BFC}}{{S}_{△EFC}}$=y,求y与x之间的函数关系式,并写出自变量x的取值范围;
(3)如图3,连接AC,线段BF与射线CA交于点G,当△CBG是等腰三角形时,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算
(1)30-2-3+(-3)2-($\frac{1}{4}}$)-1
(2)(2x-3y)2-(y+3x)(3x-y)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知直线AB分别交x、y轴于A(a,0)、B两点,C(c,-2)为直线AB上一点且在第四象限内,若$\sqrt{{c}^{2}-4}$+a2+4=-4a.
(1)如图1,求A、C点的坐标;
(2)如图2,直线OM经过O点,过C作CM⊥OM于M,CN⊥y轴于点N,连接MN,求$\frac{OM+MC}{MN}$的值;
(3)如图3,过C作CN⊥y轴于点N,G为第三象限内一点,且∠NGO=45°,试探究GO、GN、GC之间的有怎么的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在△ABC中,∠C是直角,将△BCE沿BE翻折,点C恰好落在边AB的中点D的位置上;再沿ED翻折,△ADE恰好与△BDE重合,写出图中所有的全等三角形,图中与∠A对应相等的有哪些角?与线段BC对应相等的有哪些线段?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知:在平行四边形ABCD中,AE⊥BC,垂足为E,点F为CD的中点,连接AF,EE.
(1)若CE=CD,∠ABC=45°,AE=3,求BC的长;
(2)求证:①AF=EF;②∠DAF=$\frac{1}{2}$∠AFE.

查看答案和解析>>

同步练习册答案