精英家教网 > 初中数学 > 题目详情
(2014•宁波一模)如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB交弧BC于点D,连结CD、OD,给出以下四个结论:①AC∥OD;②CE=OE;③△ODE∽△ADO;④CD2=CE•CO.其中正确结论的序号是(  )
分析:①根据等腰三角形的性质和角平分线的性质,利用等量代换求证∠CAD=∠ADO即可;
②由①得OE:EC=OD:AC,再由OD≠AC,可得CE≠OE;
③两三角形中,只有一个公共角的度数相等,其它两角不相等,所以不能证明△ODE∽△ADO;
④根据同弧所对的圆周角等于它所对的圆心角的一半,求出∠COD=45°,再利用等腰三角形的性质和三角形内角和定理求出∠CDE=45°,再求证△CED∽△CDO,利用其对应变成比例即可得出结论.
解答:解:∵AB是半圆直径,
∴AO=OD,
∴∠OAD=∠ADO,
∵AD平分∠CAB交弧BC于点D,
∴∠CAD=∠DAO=
1
2
∠CAB,
∴∠CAD=∠ADO,
∴AC∥OD,故①正确.

由题意得,OD=R,AC=
2
R,
∵OE:CE=OD:AC=
2

∴OE≠CE,故②错误;
∵∠OED=∠AOE+∠OAE=90°+22.5°=112.5°,∠AOD=90°+45°=135°,
∴∠OED≠∠AOD,
∴△ODE与△ADO不相似,故③错误;

∵AD平分∠CAB交弧BC于点D,
∴∠CAD=
1
2
×45°=22.5°,
∴∠COD=45°,
∵AB是半圆直径,
∴OC=OD,
∴∠OCD=∠ODC=67.5°
∵∠CAD=∠ADO=22.5°(已证),
∴∠CDE=∠ODC-∠ADO=67.5°-22.5°=45°,
∴△CED∽△CDO,
CD
CO
=
CE
CD

∴CD2=CO•CE,故④正确.
综上可得①④正确.
故选B.
点评:本题考查了相似三角形的判定与性质,圆心角、弧、弦的关系,圆周角定理,等腰三角形的性质,三角形内角和定理等知识点的灵活运用,此题步骤繁琐,但相对而言,难易程度适中,很适合学生的训练是一道典型的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2014•宁波一模)重庆一中综合实践活动艺体课程组为了解学生最喜欢的球类运动,对足球、乒乓球、篮球、排球四个项目进行了调查,并将调查的结果绘制成如下的两幅统计图(说明:每位同学只选一种自己最喜欢的球类),请你根据图中提供的信息解答下列问题:

(1)求这次接受调查的学生人数,并补全条形统计图;
(2)求扇形统计图中喜欢排球的圆心角度数;
(3)若调查到爱好“乒乓球”的5名学生中有3名男生,2名女生,现从这5名学生中任意抽取2名学生,请用列表法或画树状图的方法,求出刚好抽到一男一女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2014•宁波一模)鄞州区某学校篮球集训队11名队员进行定点投篮训练,将11名队员在1分钟内投进篮框的球数由小到大排序后为6,7,8,9,9,9,9,10,10,10,12,这组数据的中位数是
9
9

查看答案和解析>>

科目:初中数学 来源: 题型:

(2014•宁波一模)如图,在正方形ABCD中,对角线AC,BD交于点O,折叠正方形ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展平后,折痕DE分别交AB,AC于点E,G,连接GF,下列结论:①AE=AG;②tan∠AGE=2;③S△DOG=S四边形EFOG;④四边形ABFG为等腰梯形;⑤BE=2OG,则其中正确的结论个数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2014•宁波一模)如图是一把30°的三角尺,外边AC=8,内边与外边的距离都是2,那么EF的长度是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2014•宁波一模)如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.给出四个结论:①abc<0;②a+c=1;③2a+b<0;④b2-4ac>0.其中结论正确的个数为(  )

查看答案和解析>>

同步练习册答案