精英家教网 > 初中数学 > 题目详情

【题目】如图,的外角的平分线, 于点.,则的长是( )

A. 2 B. 1.5 C. 1 D. 0.5

【答案】C

【解析】

过点DDFABF,根据角平分线上的点到角的两边的距离相等可得DE=DF,再利用“HL”证明BDEBDF全等,ADFCDE全等,根据全等三角形对应边相等可得BE=BF,AF=CE,再用AB、BC表示出AF、CE,整理即可解得.

如图,过点DDFABF

BD是∠ABP的角平分线,

DE=DF

BDEBDF中,

BDEBDF(HL),

BE=BF

ADFCDE中,

ADFCDE(HL),

AF=CE

AF=ABBF

CE=BC+BE

ABBF=BC+BE

2BE=ABBC

AB=5,BC=3,

2BE=53=2,

解得BE=1.

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,点C为半圆上一点,AD平分∠CAB交⊙O于点D
(1)求证:OD∥AC;
(2)若AC=8,AB=10,求AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个直角三角形的两边的长是方程x2﹣7x+12=0的两个根,则此直角三角形的斜边中线长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,平面直角坐标系中,△ABC的边AB在x轴上,∠C=60°,AC交y轴于点E,AC,BC的长是方程x2﹣16x+64=0的两个根且OA:OB=1:3,请解答下列问题:

(1)求点C的坐标;
(2)求直线EB的解析式;
(3)在x轴上是否存在点P,使△BEP为等腰三角形?若存在,请直接写出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知RtABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径长等于CA的扇形CEF绕点C旋转,直线CE、CF分别与直线AB交于点M、N.

(1)如图①,当AM=BN时,将△ACM沿CM折叠,点A落在弧EF的中点P处,再将△BCN沿CN折叠,点B也恰好落在点P处,此时,PM=AM,PN=BN,PMN的形状是   .线段AM、BN、MN之间的数量关系是  

(2)如图②,当扇形CEF绕点C在∠ACB内部旋转时,线段MN、AM、BN之间的数量关系是   .试证明你的猜想;

(3)当扇形CEF绕点C旋转至图③的位置时,线段MN、AM、BN之间的数量关系是   .(不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形的对称轴上找点,使得均为等腰三角形,则满足条件的点_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).

(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;

(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.

(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图∠BAC的角平分线与BC的垂直平分线DG交于点D,DEAB,DFAC,垂足分别为EF

⑴试说明:BE=CF

⑵若AF=3,BC=4,求△ABC的周长.

查看答案和解析>>

同步练习册答案