精英家教网 > 初中数学 > 题目详情
如图△ABC内接于圆O,I是△ABC的内心,AI的延长线交圆O于点D.
(1)求证:BD=DI;
(2)若OI⊥AD,求
AB+AC
BC
的值.
(1)证明:∵点I是△ABC的内心
∴∠BAD=∠CAD,∠ABI=∠CBI
∵∠CBD=∠CAD
∴∠BAD=∠CBD
∴∠BID=∠ABI+∠BAD,∠BAD=∠CAD=∠CBD,
∵∠IBD=∠CBI+∠CBD,
∴∠BID=∠IBD
∴ID=BD;

(2)连接OA、OD、BD和BI,
∵OA=OD,OI⊥AD
∴AI=ID,
∵I为△ABC内心,
∴∠BAD=∠BCD,
∴弧BD=弧CD,
∵弧CD=弧CD,
∴∠BCD=∠BAD,
∴∠DBI=∠BCD+∠CBI=∠CAD+∠CBI,
=
1
2
(∠BAC+∠ACB),
∵∠DIB=∠DAB+∠ABI=
1
2
(∠BAC+∠ABC),
∴∠DIB=∠DBI,
∴BD=ID=AI,
BD
=
DC

故OD⊥BC,记垂足为E,则有BE=
1
2
BC,
作IG⊥AB于G,又∠DBE=∠IAG,而BD=AI,
∴Rt△BDE≌Rt△AIG,
于是,AG=BE=
1
2
BC,但AG=
1
2
(AB+AC-BC),
故AB+AC=2BC,
AB+AC
BC
=2.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,在坐标平面上,Rt△ABC为直角三角形,∠ABC=90°,AB垂直x轴,M为Rt△ABC的外心.若A点坐标为(3,4),M点坐标为(-1,1),则B点坐标为何(  )
A.(3,-1)B.(3,-2)C.(3,-3)D.(3,-4)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在直角坐标系中,⊙O1经过坐标原点,分别与x轴正半轴、y轴正半轴交于点A(3,0)、B(0,4).设△BOA的内切圆的直径为d,求d+AB的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在如图所示的平面直角坐标系中,已知点A(2,4),B(4,2).
(1)在平面直角坐标系中,我们把横坐标、纵坐标都为整数的点称为整数点,请在第一象限内求作一个整数点C,使得AC=BC,且AC的长为小于4的无理数,则C点的坐标是______,△ABC的面积是______;
(2)试求出△ABC外接圆的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,某市有一块由三条马路围成的三角形绿地现准备在其中建一小亭供人们休息,要求小亭中心到三条马路的距离相等,试确定小亭的中心位置.(不写作法,保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

铁板甲形状是等腰三角形,其顶角为45°,腰长为20cm,铁板乙的形状是直角梯形,两底分别为7cm,16cm,且有一个角为60°,现在我们把这两块铁板任意翻转,分别试图从一个直径为14cm的圆洞中穿过,若不考虑铁板厚度,则结果是(  )
A.甲能穿过,乙不能穿过B.甲不能穿过,乙能穿过
C.甲、乙都能穿过D.甲、乙都不能穿过

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD内切圆的面积为81π,则正方形的周长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,⊙O是△ABC的内切圆,与边BC,CA,AB的切点分别为D,E,F,若∠A=70°,则∠EDF=______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

等腰直角三角形ABC中,∠A=90°,⊙O为△ABC的内切圆,D、E、F分别为切点,则
EF
BC
=(  )
A.
1
4
B.
1
2
C.
2-
2
2
D.
2-
2
4

查看答案和解析>>

同步练习册答案