精英家教网 > 初中数学 > 题目详情
1.一辆小汽车在告诉公路上从静止到起动10秒内的速度经测量如下表:
时间(秒)012345678910
速度(米/秒)00.31.32.81.97.611.014.118.424.228.9
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)如果用时间t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?
(3)当t每增加1秒,v的变化情况相同吗?在哪个时间段内,v增加的最快?
(4)若高速公路上小汽车行驶速度的上限为120千米/小时,试估计大约还需几秒这辆小汽车的速度就将达到这个上限.

分析 (1)根据表中的数据,即可得出两个变量以及自变量、因变量;
(2)根据时间与速度之间的关系,即可求出v的变化趋势;
(3)根据表中的数据可得出V的变化情况以及在哪1秒钟,V的增加最大;
(4)根据小汽车行驶速度的上限为120千米/小时,再根据时间与速度的关系式即可得出答案;

解答 解:(1)上表反映了时间与速度之间的关系,时间是自变量,速度是因变量;
(2)如果用T表示时间,V表示速度,那么随着T的变化,V的变化趋势是V随着T的增大而增大;
(3)当T每增加1秒,V的变化情况不相同,在第9秒时,V的增加最大;
(4)$\frac{120×1000}{3600}$(米/秒),
由33.3-28.9=4.4,且28.9-24.2=4.7>4.4,
所以估计大约还需1秒.

点评 此题考查的知识点是:函数的表示方法,常量与变量;在解题时要根据表中的数据找出时间与速度之间的关系式是本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.如图,在Rt△ABC中,∠C=90°,AC=10cm,BC=5cm.一条线段PQ=AB,并且P、Q两点分别在线段AC和过A点且垂直于AC的射线AM上运动.问当P点位于AC的什么位置时由P、Q、A点构成的三角形与△ABC全等?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知:∠1=∠2,AC=AE,BC=DE,且点D在BC上,求证:AB=AD.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.已知一次函数y=kx+b的图象如图所示,则该函数的表达式可能是(  )
A.y=2x+2B.y=2x-2C.y=-3x+3D.y=-x-4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.对于平面直角坐标系中的线段PQ和点M,在△MPQ中,当PQ边上的高为2时,称M为PQ的“等高点”,称此时MP+MQ为PQ的“等高距离”.己知P(1,2),Q(4,2).
(1)在A(0,3),B(-1,-1),C(-1,0),D($\frac{13}{3}$,4)中,PQ的“等高点”是C、D;
(2)若M′(5,4)为PQ的“等高点”,则此时PQ的“等高距离”是3$\sqrt{5}$;
(3)若M(m,4)为PQ的“等高点”,求PQ的“等高距离”的最小值及此时m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,工地上两根电灯杆相距a米,分别在高为4米、6米的A、C处用铁丝将两杆固定,则铁丝AD与铁丝BC的交点M处离地面米的高MH=$\frac{12}{5}$m.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.某小区为了绿化环境,计划分两次购进A、B两种花草.第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种草花12棵和5棵,第二次花费265元(两次购进的A、B两种花草价格均分别相同).
(1)A、B两种花草每棵的价格分别是多少元?
(2)若购买A、B两种草花共31棵,且B种花草的数量多于A种花草的数量的7倍,请你给出一种费用最省的方案,并求出该方案所需费用.(两种花草都必须购买)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,人行天桥的引桥由楼梯和一段水平平台构成,楼梯AD与地面成39°,DE∥AC,楼梯EB与水平地面成39°角,已知BC=6m,AC=11m.
(1)求平台DE的长(精确到0.1m).
(2)求总人行道(A-D-E-B)的长.(精确到0.1m)
[参考数据:sin39°≈0.63,cos39°≈0.77,tan39°≈0.81].

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.在△ABC中,∠C=90°,∠A=30°,BC=3,如图1所示,先将△ABC进行第一次折叠,使点B落在AC边上的点B′处,且EB′⊥AC,折痕为DE,然后如图2所示,将△ABC进行第二次折叠,使点A落在BC边上的A′处,且A′与点D重合,折痕为FG,则FG的长为$\frac{63\sqrt{21}-98\sqrt{3}}{167}$.

查看答案和解析>>

同步练习册答案