分析 首先利用平行线的性质得出,∠A=∠FBD,∠D=∠ECA,根据AB=CD即可得出AC=BD,进而得出△EAC≌△FBD.
解答 证明:∵EA∥FB,
∴∠A=∠FBD,
∵EC∥FD,
∴∠D=∠ECA,
∵AB=CD,
∴AC=BD,
在△EAC和△FBD中,
$\left\{\begin{array}{l}{∠ECA=∠D}\\{∠A=∠FBD}\\{AC=BD}\end{array}\right.$,
∴△EAC≌△FBD(AAS),
∴EA=FB.
点评 此题主要考查了全等三角形的判定与性质等知识,解题时注意:两角及其夹边分别对应相等的两个三角形全等.根据已知得出△EAC≌△FBD是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com