精英家教网 > 初中数学 > 题目详情
12.在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1,、…、正方形AnBnCnCn-1,使得点A1、A2、A3…在直线l上,点C1、C2、C3…在y轴正半轴上,则△A2017A2018B2017的面积是24031

分析 根据一次函数图象上点的坐标特征找出A1、A2、A3、A4的坐标,结合图形即可得知点Bn是线段CnAn+1的中点,由此即可得出点Bn的坐标,然后根据三角形的面积公式即可得到结论.

解答 解:观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),A5(16,15),A6(32,31),…,
∴An(2n-1,2n-1-1)(n为正整数).
观察图形可知:点Bn是线段CnAn+1的中点,
∴点Bn的坐标是(2n-1,2n-1),An(2n-1,2n-1-1)(n为正整数),
∴△AnAn+1Bn的面积是$\frac{1}{2}$(2n-12=22n-3
∴△A2017A2018B2017的面积=22×2017-3=24031
故答案为:24031

点评 本题考查了一次函数图象上点的坐标特征以及规律型中点的坐标的变化,根据点的坐标的变化找出变化规律“An(2n-1,2n-1-1)(n为正整数)”是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图所示,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.
(1)求证:PB是⊙O的切线;
(2)若PB=9,DB=12,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.AB是⊙O的直径,CD切⊙O于点C,BE⊥CD于E,连接AC、BC.
(1)求证:BC平分∠ABE;
(2)若⊙O的半径为3,BE=4,求AC、BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某公司生产一种新型生物医药产品,生产成本为2万元/吨,每月生产能力为12吨,且生产出的产品都能销售出去.这种产品部分内销部分外销(出口),内销与外销的单价(单位:万元/吨)与销量的关系分别如图1,图2.

(1)如果该公司内销数量为x(单位:吨),内、外销单价分别为y1,y2,求y1,y2关于x的函数解析式;
(2)如果该公司内销数量为x(单位:吨),求内销获得的毛利润s1关于x的函数解析式;
(3)请设计一种销售方案,使该公司本月能获得最大毛利润,并求出毛利润的最大值.(毛利润=销售收入-生产成本).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)
(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?
(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点),已知△ABC三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0).
(1)经过怎样的平移,可使△ABC的顶点A与坐标原点O重合,画出平移后的三角形△OB′C′;
(2)已知△ABC的重心G的坐标为(a,b),请直接写出△OB′C′的重心G的坐标(分别用a、b的代数式表示);
(3)将△ABC绕坐标原点O逆时针旋转90°,得到△A″B″C″,画出△A″B″C″.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.设点(-1,m)和点($\frac{1}{2}$,n)是直线y=(k2-1)x+b(0<k<1)上的两个点,则m、n的大小关系为m>n.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.
(1)若AC=4,BC=2,求OE的长.
(2)试判断∠A与∠CDE的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.化简(2x)2的结果是(  )
A.x4B.2x2C.4x2D.4x

查看答案和解析>>

同步练习册答案